Let's say you have two arrays of data values from a calculation, that you can model with a continuos, differentiable function each. Both "lines" of data points intersect at (at least) one point and now the question is whether the functions behind these datasets are actually crossing or anticrossing.
The image below shows the situation, where I know (from the physics behind it) that at the upper two "contact points" the yellow and green lines actually should "switch color", whereas at the lower one both functions go out of each others way:
To give an easier "toy set" of data, take this code for example:
import matplotlib.pyplot as plt
import numpy as np
x=np.arange(-10,10,.5)
y1=[np.absolute(i**3)+100*np.absolute(i) for i in x]
y2=[-np.absolute(i**3)-100*np.absolute(i) for i in x][::-1]
plt.scatter(x,y1)
plt.scatter(x,y2,color='r')
plt.show()
Which should produce the following image:
Now how could I extrapolate whether the trend behind the data is crossing (so the data from the lower left continues to the upper right) or anti-crossing (as indicated with the colors above, the data from the lower left continues to the lower right)?
So far I was able to find the "contact point" between these to datasets by looking at the derivative of the Difference between them, roughly like this:
closePoints=np.where(np.diff(np.diff(array_A - array_B) > 0))[0] + 1
(which probably would be faster to evaluate with something like scipy's cKDTree).
Should I go on and (probably very inefficiently) check the derivative on both sides of the intersection? Or can I somehow check if the extrapolation of the data on the left side fits better to crossing or anticrossing?
The point of intersection formula is used to find the point of intersection of two lines, meaning the meeting point of two lines. These two lines can be represented by the equation a1x+b1y+c1=0 a 1 x + b 1 y + c 1 = 0 and a2x+b2y+c2=0 a 2 x + b 2 y + c 2 = 0 , respectively.
To find the point at which the two lines intersect, we simply need to solve the two equations for the two unknowns, x and y. Finally, divide both sides by A 1B 2 - A 2B 1, and you get the equation for x. The equation for y can be derived similarly.
The points of intersection of two functions, f(x) and g(x), are the (x,y) coordinate pairs for which the input, x, results in the same output value from both functions.
An intersection point is where two or more graphs coincide. It is a point that is the solution to a system of equations.
I understood your problem as:
A potential solution is:
Let me give some details:
How to check if two bounding-boxes (rectangles) of the segments overlap so that the segments potentially can intersect?
The minimal x/y value of one rectangle must be smaller than the maximal x/y value of the other. This must hold for both.
If you have two segments how do you solve for intersection points?
Let's say segment A has two points (x1, y1) and (x2, y2) and segment B has two points (x2, y3) and (x4, y4).
Then you simply have two parametrized line equations which have to be set equal:
(x1, y1) + t * (x2 - x1, y2 - y1) = (x3, y3) + q * (x4 - x3, y4 - y3)
And you need to find all solutions where t or q in [0, 1). The corresponding linear equation system may be rank deficient or not solvable at all, best is to use a general solver (I chose numpy.linalg.lstsq
) that does everything in one go.
Curves sharing a common point
Surprisingly difficult are cases where one point is common in the segmentation of both curves. The difficulty lies then in the correct decision of real intersection vs. contact points. The solution is to compute the angle of both adjacent segments of both curves (gives 4 angles) around the common point and look at the order of the angles. If both curves come alternating when going around the equal point then it's an intersection, otherwise it isn't.
And a code example based on your data:
import math
import matplotlib.pyplot as plt
import numpy as np
def intersect_curves(x1, y1, x2, y2):
"""
x1, y1 data vector for curve 1
x2, y2 data vector for curve 2
"""
# number of points in each curve, number of segments is one less, need at least one segment in each curve
N1 = x1.shape[0]
N2 = x2.shape[0]
# get segment presentation (xi, xi+1; xi+1, xi+2; ..)
xs1 = np.vstack((x1[:-1], x1[1:]))
ys1 = np.vstack((y1[:-1], y1[1:]))
xs2 = np.vstack((x2[:-1], x2[1:]))
ys2 = np.vstack((y2[:-1], y2[1:]))
# test if bounding-boxes of segments overlap
mix1 = np.tile(np.amin(xs1, axis=0), (N2-1,1))
max1 = np.tile(np.amax(xs1, axis=0), (N2-1,1))
miy1 = np.tile(np.amin(ys1, axis=0), (N2-1,1))
may1 = np.tile(np.amax(ys1, axis=0), (N2-1,1))
mix2 = np.transpose(np.tile(np.amin(xs2, axis=0), (N1-1,1)))
max2 = np.transpose(np.tile(np.amax(xs2, axis=0), (N1-1,1)))
miy2 = np.transpose(np.tile(np.amin(ys2, axis=0), (N1-1,1)))
may2 = np.transpose(np.tile(np.amax(ys2, axis=0), (N1-1,1)))
idx = np.where((mix2 <= max1) & (max2 >= mix1) & (miy2 <= may1) & (may2 >= miy1)) # overlapping segment combinations
# going through all the possible segments
x0 = []
y0 = []
for (i, j) in zip(idx[0], idx[1]):
# get segment coordinates
xa = xs1[:, j]
ya = ys1[:, j]
xb = xs2[:, i]
yb = ys2[:, i]
# ax=b, prepare matrices a and b
a = np.array([[xa[1] - xa[0], xb[0] - xb[1]], [ya[1] - ya[0], yb[0]- yb[1]]])
b = np.array([xb[0] - xa[0], yb[0] - ya[0]])
r, residuals, rank, s = np.linalg.lstsq(a, b)
# if this is not a
if rank == 2 and not residuals and r[0] >= 0 and r[0] < 1 and r[1] >= 0 and r[1] < 1:
if r[0] == 0 and r[1] == 0 and i > 0 and j > 0:
# super special case of one segment point (not the first) in common, need to differentiate between crossing or contact
angle_a1 = math.atan2(ya[1] - ya[0], xa[1] - xa[0])
angle_b1 = math.atan2(yb[1] - yb[0], xb[1] - xb[0])
# get previous segment
xa2 = xs1[:, j-1]
ya2 = ys1[:, j-1]
xb2 = xs2[:, i-1]
yb2 = ys2[:, i-1]
angle_a2 = math.atan2(ya2[0] - ya2[1], xa2[0] - xa2[1])
angle_b2 = math.atan2(yb2[0] - yb2[1], xb2[0] - xb2[1])
# determine in which order the 4 angle are
if angle_a2 < angle_a1:
h = angle_a1
angle_a1 = angle_a2
angle_a2 = h
if (angle_b1 > angle_a1 and angle_b1 < angle_a2 and (angle_b2 < angle_a1 or angle_b2 > angle_a2)) or\
((angle_b1 < angle_a1 or angle_b1 > angle_a2) and angle_b2 > angle_a1 and angle_b2 < angle_a2):
# both in or both out, just a contact point
x0.append(xa[0])
y0.append(ya[0])
else:
x0.append(xa[0] + r[0] * (xa[1] - xa[0]))
y0.append(ya[0] + r[0] * (ya[1] - ya[0]))
return (x0, y0)
# create data
def data_A():
# data from question (does not intersect)
x1 = np.arange(-10, 10, .5)
x2 = x1
y1 = [np.absolute(x**3)+100*np.absolute(x) for x in x1]
y2 = [-np.absolute(x**3)-100*np.absolute(x) for x in x2][::-1]
return (x1, y1, x2, y2)
def data_B():
# sine, cosine, should have some intersection points
x1 = np.arange(-10, 10, .5)
x2 = x1
y1 = np.sin(x1)
y2 = np.cos(x2)
return (x1, y1, x2, y2)
def data_C():
# a spiral and a diagonal line, showing the more general case
t = np.arange(0, 10, .2)
x1 = np.sin(t * 2) * t
y1 = np.cos(t * 2) * t
x2 = np.arange(-10, 10, .5)
y2 = x2
return (x1, y1, x2, y2)
def data_D():
# parallel and overlapping, should give no intersection point
x1 = np.array([0, 1])
y1 = np.array([0, 0])
x2 = np.array([-1, 3])
y2 = np.array([0, 0])
return (x1, y1, x2, y2)
def data_E():
# crossing at a segment point, should give exactly one intersection point
x1 = np.array([-1,0,1])
y1 = np.array([0,0,0])
x2 = np.array([0,0,0])
y2 = np.array([-1,0,1])
return (x1, y1, x2, y2)
def data_F():
# contacting at one segment point, should give no intersection point
x1 = np.array([-1,0,-1])
y1 = np.array([-1,0,1])
x2 = np.array([1,0,1])
y2 = np.array([-1,0,1])
return (x1, y1, x2, y2)
x1, y1, x2, y2 = data_F() # select the data you like here
# show example data
plt.plot(x1, y1, 'b-o')
plt.plot(x2, y2, 'r-o')
# call to intersection computation
x0, y0 = intersect_curves(x1, y1, x2, y2)
print('{} intersection points'.format(len(x0)))
# display intersection points in green
plt.plot(x0, y0, 'go')
plt.show() # zoom in to see that the algorithm is correct
I tested it extensively and should get most (all) border cases right (see data_A-F in code). Some examples:
Some Comments:
y=f(x)
but it's applicable to arbitrary curves in 2D.You could use a spline interpolation for the difference function g(x) = y1(x) - y(2)
. Finding the minimum of the square g(x)**2
would be a contact or crossing point. Looking at the first and second derivative you could decide if it is a contact point( g(x)
has minimum, g'(x)==0
, g''(x) != 0
) or a crossing point (g(x)
is a stationary point, g'(x)==0
, g''(x)==0
).
The following code searches for a minimum of g(x)**2
in constrained interval and then plot the derivatives. The use of a constrained interval is to find multiple points successively by excluding intervals in which previous points were.
import matplotlib.pyplot as plt
import numpy as np
import scipy.optimize as sopt
import scipy.interpolate as sip
# test functions:
nocrossingTest = True
if nocrossingTest:
f1 = lambda x: +np.absolute(x**3)+100*np.absolute(x)
f2 = lambda x: -np.absolute(x**3)-100*np.absolute(x)
else:
f1 = lambda x: +np.absolute(x**3)+100*x
f2 = lambda x: -np.absolute(x**3)-100*x
xp = np.arange(-10,10,.5)
y1p, y2p = f1(xp), f2(xp) # test array
# Do Interpolation of y1-y2 to find crossing point:
g12 = sip.InterpolatedUnivariateSpline(xp, y1p - y2p) # Spline Interpolator of Difference
dg12 = g12.derivative() # spline derivative
ddg12 = dg12.derivative() # spline derivative
# Bounded least square fit to find minimal distance
gg = lambda x: g12(x)*g12(x)
rr = sopt.minimize_scalar(gg, bounds=[-1,1]) # search minium in Interval [-1,1]
x_c = rr['x'] # x value with minimum distance
print("Crossing point is at x = {} (Distance: {})".format(x_c, g12(x_c)))
fg = plt.figure(1)
fg.clf()
fg,ax = plt.subplots(1, 1,num=1)
ax.set_title("Function Values $y$")
ax.plot(xp, np.vstack([y1p,y2p]).T, 'x',)
xx = np.linspace(xp[0], xp[-1], 1000)
ax.plot(xx, np.vstack([f1(xx), f2(xx)]).T, '-', alpha=0.5)
ax.grid(True)
ax.legend(loc="best")
fg.canvas.draw()
fg = plt.figure(2)
fg.clf()
fg,axx = plt.subplots(3, 1,num=2)
axx[0].set_title("$g(x) = y_1(x) - y_2(x)$")
axx[1].set_title("$dg(x)/dx$")
axx[2].set_title("$d^2g(x)/dx^2$")
for ax,g in zip(axx, [g12, dg12, ddg12]):
ax.plot(xx, g(xx))
ax.plot(x_c, g(x_c), 'ro', alpha=.5)
ax.grid(True)
fg.tight_layout()
plt.show()
The difference function show that the difference is not smooth:
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With