I have a X, distributed matrix, in RowMatrix form. I am using Spark 1.3.0. I need to be able to calculate X inverse.
import org.apache.spark.mllib.linalg.{Vectors,Vector,Matrix,SingularValueDecomposition,DenseMatrix,DenseVector}
import org.apache.spark.mllib.linalg.distributed.RowMatrix
def computeInverse(X: RowMatrix): DenseMatrix = {
val nCoef = X.numCols.toInt
val svd = X.computeSVD(nCoef, computeU = true)
if (svd.s.size < nCoef) {
sys.error(s"RowMatrix.computeInverse called on singular matrix.")
}
// Create the inv diagonal matrix from S
val invS = DenseMatrix.diag(new DenseVector(svd.s.toArray.map(x => math.pow(x,-1))))
// U cannot be a RowMatrix
val U = new DenseMatrix(svd.U.numRows().toInt,svd.U.numCols().toInt,svd.U.rows.collect.flatMap(x => x.toArray))
// If you could make V distributed, then this may be better. However its alreadly local...so maybe this is fine.
val V = svd.V
// inv(X) = V*inv(S)*transpose(U) --- the U is already transposed.
(V.multiply(invS)).multiply(U)
}
I had problems using this function with option
conf.set("spark.sql.shuffle.partitions", "12")
The rows in RowMatrix got shuffled.
Here is an update that worked for me
import org.apache.spark.mllib.linalg.{DenseMatrix,DenseVector}
import org.apache.spark.mllib.linalg.distributed.IndexedRowMatrix
def computeInverse(X: IndexedRowMatrix)
: DenseMatrix =
{
val nCoef = X.numCols.toInt
val svd = X.computeSVD(nCoef, computeU = true)
if (svd.s.size < nCoef) {
sys.error(s"IndexedRowMatrix.computeInverse called on singular matrix.")
}
// Create the inv diagonal matrix from S
val invS = DenseMatrix.diag(new DenseVector(svd.s.toArray.map(x => math.pow(x, -1))))
// U cannot be a RowMatrix
val U = svd.U.toBlockMatrix().toLocalMatrix().multiply(DenseMatrix.eye(svd.U.numRows().toInt)).transpose
val V = svd.V
(V.multiply(invS)).multiply(U)
}
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With