I have the following dataframe df
:
id lat lon year month day
0 381 53.30660 -0.54649 2004 1 2
1 381 53.30660 -0.54649 2004 1 3
2 381 53.30660 -0.54649 2004 1 4
and I want to create a new column df['Date']
where the year
, month
, and day
columns are combined according to the format yyyy-m-d
.
Following this post, I did:
`df['Date']=pd.to_datetime(df['year']*10000000000
+df['month']*100000000
+df['day']*1000000,
format='%Y-%m-%d%')`
The result is not what I expected, as it starts from 1970 instead of 2004, and it also contains the hour stamp, which I did not specify:
id lat lon year month day Date
0 381 53.30660 -0.54649 2004 1 2 1970-01-01 05:34:00.102
1 381 53.30660 -0.54649 2004 1 3 1970-01-01 05:34:00.103
2 381 53.30660 -0.54649 2004 1 4 1970-01-01 05:34:00.104
As the dates should be in the 2004-1-2
format, what am I doing wrong?
There is an easier way:
In [250]: df['Date']=pd.to_datetime(df[['year','month','day']])
In [251]: df
Out[251]:
id lat lon year month day Date
0 381 53.3066 -0.54649 2004 1 2 2004-01-02
1 381 53.3066 -0.54649 2004 1 3 2004-01-03
2 381 53.3066 -0.54649 2004 1 4 2004-01-04
from docs:
Assembling a datetime from multiple columns of a DataFrame. The keys can be common abbreviations like [
year
,month
,day
,minute
,second
,ms
,us
,ns
]) or plurals of the same
One solution would be to convert these columns to string, concatenate using agg
+ str.join
, and then convert to datetime
.
df['Date'] = pd.to_datetime(
df[['year', 'month', 'day']].astype(str).agg('-'.join, axis=1))
df
id lat lon year month day Date
0 381 53.3066 -0.54649 2004 1 2 2004-01-02
1 381 53.3066 -0.54649 2004 1 3 2004-01-03
2 381 53.3066 -0.54649 2004 1 4 2004-01-04
You may also want to add an errors='coerce'
argument if you have invalid datetime combinations between your columns.
To fix your code
df['Date']=pd.to_datetime(df.year*10000+df.month*100+df.day,format='%Y%m%d')
df
Out[57]:
id lat lon year month day Date
0 381 53.3066 -0.54649 2004 1 2 2004-01-02
1 381 53.3066 -0.54649 2004 1 3 2004-01-03
2 381 53.3066 -0.54649 2004 1 4 2004-01-04
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With