how to simplify exponents in equations in sympy
from sympy import symbols
a,b,c,d,e,f=symbols('abcdef')
j=(a**b**5)**(b**10)
print j
(a**(b**5))**(b**10) #ans even after using expand simplify
# desired output
a**(b**15)
and if it is not possible with sympy which module should i import in python?
edit even if i define 'b' as real,and also all other symbols
b=symbols('b',real=True) not getting simplified exponents it simplifies only if exponents are constants
a=symbols('a',real=True)
b=symbols('b',real=True)
(a**5)**10
a**50 #simplifies only if exp are numbers
(a**b**5)**b**10
(a**(b**5))**b**10 #no simplification
(xm)n = xmn is true only if m, n are real.
>>> import math
>>> x = math.e
>>> m = 2j*math.pi
>>> (x**m)**m # (e^(2πi))^(2πi) = 1^(2πi) = 1
(1.0000000000000016+0j)
>>> x**(m*m) # e^(2πi×2πi) = e^(-4π²) ≠ 1
(7.157165835186074e-18-0j)
AFAIK, sympy supports complex numbers, so I believe this simplification should not be done unless you can prove b
is real.
Edit: It is also false if x is not positive.
>>> x = -2
>>> m = 2
>>> n = 0.5
>>> (x**m)**n
2.0
>>> x**(m*n)
-2.0
Edit(by gnibbler): Here is the original example with Kenny's restrictions applied
>>> from sympy import symbols
>>> a,b=symbols('ab', real=True, positive=True)
>>> j=(a**b**5)**(b**10)
>>> print j
a**(b**15)
a,b,c=symbols('abc',real=True,positive=True)
(a**b**5)**b**10
a**(b**15)#ans
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With