I have a data.frame all_data
with multiple columns, like this
VoS Value Total.Value
1 NA NA
NA NA 41
NA 13 NA
76 NA NA
4 NA NA
NA 7 NA
NA NA 22
I want to combine these columns into one column Total VoS
that looks like this:
Total VoS
1
41
13
76
4
7
22
I have tried
all_data <- unite( all_data, Total VoS, VoS,
Value,
Total.Value )
which is close to what I want, but end up with this:
Total VoS
1_NA_NA
41_NA_NA
13_NA_NA
76_NA_NA
4_NA_NA
7_NA_NA
22_NA_NA
I tried doing na.rm = TRUE
within the unite
function, but that returns Error: `TRUE` must evaluate to column positions or names, not a logical vector
.
With unite
, there is na.rm
argument which is FALSE
by default
library(tidyr)
unite( all_data, Total, VoS, Value, Total.Value, na.rm = TRUE )
# Total
#1 1
#2 41
#3 13
#4 76
#5 4
#6 7
#7 22
In the OP's original data, convert the columns of interest to character
from factor
and then do the unite
library(dplyr)
all_data_new %>%
mutate_at(c(3, 6, 7, 11), as.character) %>%
unite(New, names(.)[c(3, 6, 7, 11)], na.rm = TRUE)
# Geographic.area.name Year New X2007.NAICS.codes.and.NAICS.based.rollup.code
#1 Alabama 2009 90,530,746 31-33
#2 Alabama 2008 116,401,285 31-33
#3 Alabama 2009 9,932,542 311
#4 Alabama 2008 9,661,432 311
#5 Alabama 2009 1,819,728 3111
#6 Alabama 2008 1,744,928 3111
# Meaning.of.2007.NAICS.codes.and.NAICS.based.rollup.code
#1 Manufacturing
#2 Manufacturing
#3 Food manufacturing
#4 Food manufacturing
#5 Animal food manufacturing
#6 Animal food manufacturing
#Relative.standard.error.for.estimate.of.total.value.of.shipments.and.receipts.for.services.... X2012.NAICS.code
#1 <NA> <NA>
#2 <NA> <NA>
#3 <NA> <NA>
#4 <NA> <NA>
#5 <NA> <NA>
#6 <NA> <NA>
# Meaning.of.2012.NAICS.code
#1 <NA>
#2 <NA>
#3 <NA>
#4 <NA>
#5 <NA>
#6 <NA>
Or another option is coalesce
library(dplyr)
all_data %>%
transmute(Total = coalesce(!!! .))
# Total
#1 1
#2 41
#3 13
#4 76
#5 4
#6 7
#7 22
Or in base R
with pmax
do.call(pmax, c(all_data, na.rm = TRUE))
Or using pmin
do.call(pmin, c(all_data, na.rm = TRUE))
all_data <- structure(list(VoS = c(1L, NA, NA, 76L, 4L, NA, NA), Value = c(NA,
NA, 13L, NA, NA, 7L, NA), Total.Value = c(NA, 41L, NA, NA, NA,
NA, 22L)), class = "data.frame", row.names = c(NA, -7L))
all_data_new <- structure(list(Geographic.area.name = structure(c(1L, 1L, 1L,
1L, 1L, 1L), .Label = "Alabama", class = "factor"), Year = c(2009L,
2008L, 2009L, 2008L, 2009L, 2008L), Total.value.of.shipments...1.000. = c("90,530,746",
"116,401,285", "9,932,542", "9,661,432", "1,819,728", "1,744,928"
), X2007.NAICS.codes.and.NAICS.based.rollup.code = structure(c(1L,
1L, 2L, 2L, 3L, 3L), .Label = c("31-33", "311", "3111"), class = "factor"),
Meaning.of.2007.NAICS.codes.and.NAICS.based.rollup.code = structure(c(3L,
3L, 2L, 2L, 1L, 1L), .Label = c("Animal food manufacturing",
"Food manufacturing", "Manufacturing"), class = "factor"),
X.Total.value.of.shipments...1.000.. = structure(c(NA_integer_,
NA_integer_, NA_integer_, NA_integer_, NA_integer_, NA_integer_
), .Label = character(0), class = "factor"), X.Total.value.of.shipments.and.receipts.for.services...1.000.. = structure(c(NA_integer_,
NA_integer_, NA_integer_, NA_integer_, NA_integer_, NA_integer_
), .Label = character(0), class = "factor"), Relative.standard.error.for.estimate.of.total.value.of.shipments.and.receipts.for.services.... = c(NA_character_,
NA_character_, NA_character_, NA_character_, NA_character_,
NA_character_), X2012.NAICS.code = structure(c(NA_integer_,
NA_integer_, NA_integer_, NA_integer_, NA_integer_, NA_integer_
), .Label = character(0), class = "factor"), Meaning.of.2012.NAICS.code = structure(c(NA_integer_,
NA_integer_, NA_integer_, NA_integer_, NA_integer_, NA_integer_
), .Label = character(0), class = "factor"), Total.value.of.shipments.and.receipts.for.services...1.000. = c(NA_character_,
NA_character_, NA_character_, NA_character_, NA_character_,
NA_character_)), row.names = c(NA, 6L), class = "data.frame")
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With