I have hourly data from ERA5 for each day in a specific year. I want to convert that data from hourly to daily. I know the long and hard way to do it, but I need something which does that easily.
Copernicus has a code for this here https://confluence.ecmwf.int/display/CKB/ERA5%3A+How+to+calculate+daily+total+precipitation, which works fine if the data set is only converted for one day, but when converting for the whole year, i am having problems with that.
Link to download ERA5 dataset which is available at https://cds.climate.copernicus.eu/cdsapp#!/home
https://confluence.ecmwf.int/display/CKB/How+to+download+ERA5
This script downloads the houly data for only 2 days (1st and 2nd of January 2017):#!/usr/bin/env python
"""
Save as get-tp.py, then run "python get-tp.py".
Input file : None
Output file: tp_20170101-20170102.nc
"""
import cdsapi
c = cdsapi.Client()
r = c.retrieve(
'reanalysis-era5-single-levels', {
'variable' : 'total_precipitation',
'product_type': 'reanalysis',
'year' : '2017',
'month' : '01',
'day' : ['01', '02'],
'time' : [
'00:00','01:00','02:00',
'03:00','04:00','05:00',
'06:00','07:00','08:00',
'09:00','10:00','11:00',
'12:00','13:00','14:00',
'15:00','16:00','17:00',
'18:00','19:00','20:00',
'21:00','22:00','23:00'
],
'format' : 'netcdf'
})
r.download('tp_20170101-20170102.nc')
## Add multiple days and multiple months to donload more data
Below script will create a netCDF file for only one day
#!/usr/bin/env python
"""
Save as file calculate-daily-tp.py and run "python calculate-daily-tp.py".
Input file : tp_20170101-20170102.nc
Output file: daily-tp_20170101.nc
"""
import time, sys
from datetime import datetime, timedelta
from netCDF4 import Dataset, date2num, num2date
import numpy as np
day = 20170101
d = datetime.strptime(str(day), '%Y%m%d')
f_in = 'tp_%d-%s.nc' % (day, (d + timedelta(days = 1)).strftime('%Y%m%d'))
f_out = 'daily-tp_%d.nc' % day
time_needed = []
for i in range(1, 25):
time_needed.append(d + timedelta(hours = i))
with Dataset(f_in) as ds_src:
var_time = ds_src.variables['time']
time_avail = num2date(var_time[:], var_time.units,
calendar = var_time.calendar)
indices = []
for tm in time_needed:
a = np.where(time_avail == tm)[0]
if len(a) == 0:
sys.stderr.write('Error: precipitation data is missing/incomplete - %s!\n'
% tm.strftime('%Y%m%d %H:%M:%S'))
sys.exit(200)
else:
print('Found %s' % tm.strftime('%Y%m%d %H:%M:%S'))
indices.append(a[0])
var_tp = ds_src.variables['tp']
tp_values_set = False
for idx in indices:
if not tp_values_set:
data = var_tp[idx, :, :]
tp_values_set = True
else:
data += var_tp[idx, :, :]
with Dataset(f_out, mode = 'w', format = 'NETCDF3_64BIT_OFFSET') as ds_dest:
# Dimensions
for name in ['latitude', 'longitude']:
dim_src = ds_src.dimensions[name]
ds_dest.createDimension(name, dim_src.size)
var_src = ds_src.variables[name]
var_dest = ds_dest.createVariable(name, var_src.datatype, (name,))
var_dest[:] = var_src[:]
var_dest.setncattr('units', var_src.units)
var_dest.setncattr('long_name', var_src.long_name)
ds_dest.createDimension('time', None)
var = ds_dest.createVariable('time', np.int32, ('time',))
time_units = 'hours since 1900-01-01 00:00:00'
time_cal = 'gregorian'
var[:] = date2num([d], units = time_units, calendar = time_cal)
var.setncattr('units', time_units)
var.setncattr('long_name', 'time')
var.setncattr('calendar', time_cal)
# Variables
var = ds_dest.createVariable(var_tp.name, np.double, var_tp.dimensions)
var[0, :, :] = data
var.setncattr('units', var_tp.units)
var.setncattr('long_name', var_tp.long_name)
# Attributes
ds_dest.setncattr('Conventions', 'CF-1.6')
ds_dest.setncattr('history', '%s %s'
% (datetime.now().strftime('%Y-%m-%d %H:%M:%S'),
' '.join(time.tzname)))
print('Done! Daily total precipitation saved in %s' % f_out)
The result should be daily values for the calculate variable (such as precipitation, etc) for the whole year.
Example: Let's say I have a precipitation data for the whole year as 1mm/hr every day, I would have 2928 values for the whole year.
What I want is 24mm/day for the whole year with only 365 values for a non-leap year.
Example input dataset: Subset of the data can be downloaded from here (for 1st and 2nd January 2017) https://www.dropbox.com/sh/0vdfn20p355st3i/AABKYO4do_raGHC34VnsXGPqa?dl=0. Just use the 2nd script after this to check the code. {the code for the whole year is >10 GB thus can't be uploaded
Thanks in advance
xarray resample is just the tool for you. It converts netCDF data from one temporal resolution (e.g. hourly) to another (e.g. daily) in one line. Using your sample data file, we can create daily-means using the following code:
import xarray as xr
ds = xr.open_dataset('./tp_20170101-20170102.nc')
tp = ds['tp'] # dimensions [time: 48, latitude: 721, longitude: 1440]
tp_daily = tp.resample(time='D').mean(dim='time') # dimensions (time: 2, latitude: 721, longitude: 1440)
You'll see that the resample
command takes in a temporal code, in this case 'D'
which means daily and then we specify that we want to compute the mean for each day using the hourly data of that day with .mean(dim='time')
.
If instead, for example, you wanted to compute the daily max rather than the daily mean, you'd replace .mean(dim='time')
with .max(dim='time')
. You can also go from hourly to monthly (MS
or month-start), annual (AS
or annual-start), and many more. The temporal frequency codes can be found in the Pandas docs.
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With