I'm looking for help with this simultaneous group-by / row-on-row difference problem in Pandas. The problem is exactly as stated here for R: How to calculate time difference between datetimes, for each group (student-contract)?
I have data like this:
# USER_ID CONTRACT_REF SUBMISSION_DATE
1 1 A 20/6 01:00
2 1 A 20/6 02:00
3 1 B 20/6 03:00
4 4 A 20/6 04:00
5 5 A 20/6 05:00
6 5 B 20/6 06:00
7 7 A 20/6 07:00
8 7 B 20/6 08:00
9 7 B 20/6 09:30
10 7 B 20/6 10:00
I want to calculate the time difference from the previous submission for each unique USER_ID - CONTRACT_REF pair.
Note: each USER_ID - CONTRACT_REF pair has to have a zero (or null) for its first appearance.
So the output should look as follows:
# USER_ID CONTRACT_REF SUBMISSION_DATE TIME_DIFFERENCE
1 1 A 20/6 01:00 0
2 1 A 20/6 02:00 1
3 1 B 20/6 03:00 0
4 4 A 20/6 04:00 0
5 5 A 20/6 05:00 0
6 5 B 20/6 06:00 0
7 7 A 20/6 07:00 0
8 7 A 20/6 08:00 1
9 7 A 20/6 09:30 1.5
10 7 B 20/6 10:00 0
I'm currently moving to Pandas from R, and while I find the syntax refreshing, I'm a bit stumped when it comes to complex functions on dataframes.
Thanks in advance for any tips!
[Note: your data doesn't seem to match your desired output; there are no CONTRACT_REF C
s in the second, and even in your output, I don't see why the 5, B
row is 1 and not 0. I'm assuming that these are mistakes on your part. Since you didn't comment, I'm going to use the data from the output, because it leads to a more interesting column.]
I might do something like
df["SUBMISSION_DATE"] = pd.to_datetime(df["SUBMISSION_DATE"],dayfirst=True)
gs = df.groupby(["USER_ID", "CONTRACT_REF"])["SUBMISSION_DATE"]
df["TIME_DIFF"] = gs.diff().fillna(0) / pd.datetools.timedelta(hours=1)
which produces
>>> df
# USER_ID CONTRACT_REF SUBMISSION_DATE TIME_DIFF
0 1 1 A 2014-06-20 01:00:00 0.0
1 2 1 A 2014-06-20 02:00:00 1.0
2 3 1 B 2014-06-20 03:00:00 0.0
3 4 4 A 2014-06-20 04:00:00 0.0
4 5 5 A 2014-06-20 05:00:00 0.0
5 6 5 B 2014-06-20 06:00:00 0.0
6 7 7 A 2014-06-20 07:00:00 0.0
7 8 7 A 2014-06-20 08:00:00 1.0
8 9 7 A 2014-06-20 09:30:00 1.5
9 10 7 B 2014-06-20 10:00:00 0.0
[10 rows x 5 columns]
Some explanation: starting from a dataframe like
>>> df
# USER_ID CONTRACT_REF SUBMISSION_DATE
0 1 1 A 20/6 01:00
1 2 1 A 20/6 02:00
2 3 1 B 20/6 03:00
3 4 4 A 20/6 04:00
4 5 5 A 20/6 05:00
5 6 5 B 20/6 06:00
6 7 7 A 20/6 07:00
7 8 7 A 20/6 08:00
8 9 7 A 20/6 09:30
9 10 7 B 20/6 10:00
[10 rows x 4 columns]
We want to turn the SUBMISSION_DATE
column from strings to real date objects:
>>> df["SUBMISSION_DATE"] = pd.to_datetime(df["SUBMISSION_DATE"],dayfirst=True)
>>> df
# USER_ID CONTRACT_REF SUBMISSION_DATE
0 1 1 A 2014-06-20 01:00:00
1 2 1 A 2014-06-20 02:00:00
2 3 1 B 2014-06-20 03:00:00
3 4 4 A 2014-06-20 04:00:00
4 5 5 A 2014-06-20 05:00:00
5 6 5 B 2014-06-20 06:00:00
6 7 7 A 2014-06-20 07:00:00
7 8 7 A 2014-06-20 08:00:00
8 9 7 A 2014-06-20 09:30:00
9 10 7 B 2014-06-20 10:00:00
[10 rows x 4 columns]
Then we can group by USER_ID
and CONTRACT_REF
, and select the SUBMISSION_DATE
column:
>>> gs = df.groupby(["USER_ID", "CONTRACT_REF"])["SUBMISSION_DATE"]
>>> gs
<pandas.core.groupby.SeriesGroupBy object at 0xa7af08c>
Then we can take the difference of each group:
>>> gs.diff()
0 NaT
1 01:00:00
2 NaT
3 NaT
4 NaT
5 NaT
6 NaT
7 01:00:00
8 01:30:00
9 NaT
dtype: timedelta64[ns]
NaT
, Not-a-Time, is the temporal equivalent of NaN
. We can fill these with 0:
>>> gs.diff().fillna(0)
0 00:00:00
1 01:00:00
2 00:00:00
3 00:00:00
4 00:00:00
5 00:00:00
6 00:00:00
7 01:00:00
8 01:30:00
9 00:00:00
dtype: timedelta64[ns]
And since you want things to be measured in hours, we can divide by a timedelta of 1 hour:
>>> gs.diff().fillna(0) / pd.datetools.timedelta(hours=1)
0 0.0
1 1.0
2 0.0
3 0.0
4 0.0
5 0.0
6 0.0
7 1.0
8 1.5
9 0.0
dtype: float64
Assign this to the frame:
>>> df["TIME_DIFF"] = gs.diff().fillna(0) / pd.datetools.timedelta(hours=1)
And we're done:
>>> df
# USER_ID CONTRACT_REF SUBMISSION_DATE TIME_DIFF
0 1 1 A 2014-06-20 01:00:00 0.0
1 2 1 A 2014-06-20 02:00:00 1.0
2 3 1 B 2014-06-20 03:00:00 0.0
3 4 4 A 2014-06-20 04:00:00 0.0
4 5 5 A 2014-06-20 05:00:00 0.0
5 6 5 B 2014-06-20 06:00:00 0.0
6 7 7 A 2014-06-20 07:00:00 0.0
7 8 7 A 2014-06-20 08:00:00 1.0
8 9 7 A 2014-06-20 09:30:00 1.5
9 10 7 B 2014-06-20 10:00:00 0.0
[10 rows x 5 columns]
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With