Logo Questions Linux Laravel Mysql Ubuntu Git Menu
 

Finding bogus data in a pandas dataframe read with read_fwf()

I'm trying to analyse the weather records for New York, using the daily data taken from here: http://cdiac.ornl.gov/epubs/ndp/ushcn/daily_doc.html

I'm loading the data with:

tf = pandas.read_fwf(io.open('state30_NY.txt'), widths=widths, names=names, na_values=['-9999'])

Where:

>>> widths
[6, 4, 2, 4, 5, 1, 1, 1, 5, 1, 1, 1, 5, 1, 1, 1, 5, 1, 1, 1, 5, 1, 1, 1, 5, 1, 1, 1, 5, 1, 1, 1, 5, 1, 1, 1, 5, 1, 1, 1, 5, 1, 1, 1, 5, 1, 1, 1, 5, 1, 1, 1, 5, 1, 1, 1, 5, 1, 1, 1, 5, 1, 1, 1, 5, 1, 1, 1, 5, 1, 1, 1, 5, 1, 1, 1, 5, 1, 1, 1, 5, 1, 1, 1, 5, 1, 1, 1, 5, 1, 1, 1, 5, 1, 1, 1, 5, 1, 1, 1, 5, 1, 1, 1, 5, 1, 1, 1, 5, 1, 1, 1, 5, 1, 1, 1, 5, 1, 1, 1, 5, 1, 1, 1, 5, 1, 1, 1]
>>> names
['COOP', 'YEAR', 'MONTH', 'ELEMENT', 'VALUE1', 'MFLAG1', 'QFLAG1', 'SFLAG1', 'VALUE2', 'MFLAG2', 'QFLAG2', 'SFLAG2', 'VALUE3', 'MFLAG3', 'QFLAG3', 'SFLAG3', 'VALUE4', 'MFLAG4', 'QFLAG4', 'SFLAG4', 'VALUE5', 'MFLAG5', 'QFLAG5', 'SFLAG5', 'VALUE6', 'MFLAG6', 'QFLAG6', 'SFLAG6', 'VALUE7', 'MFLAG7', 'QFLAG7', 'SFLAG7', 'VALUE8', 'MFLAG8', 'QFLAG8', 'SFLAG8', 'VALUE9', 'MFLAG9', 'QFLAG9', 'SFLAG9', 'VALUE10', 'MFLAG10', 'QFLAG10', 'SFLAG10', 'VALUE11', 'MFLAG11', 'QFLAG11', 'SFLAG11', 'VALUE12', 'MFLAG12', 'QFLAG12', 'SFLAG12', 'VALUE13', 'MFLAG13', 'QFLAG13', 'SFLAG13', 'VALUE14', 'MFLAG14', 'QFLAG14', 'SFLAG14', 'VALUE15', 'MFLAG15', 'QFLAG15', 'SFLAG15', 'VALUE16', 'MFLAG16', 'QFLAG16', 'SFLAG16', 'VALUE17', 'MFLAG17', 'QFLAG17', 'SFLAG17', 'VALUE18', 'MFLAG18', 'QFLAG18', 'SFLAG18', 'VALUE19', 'MFLAG19', 'QFLAG19', 'SFLAG19', 'VALUE20', 'MFLAG20', 'QFLAG20', 'SFLAG20', 'VALUE21', 'MFLAG21', 'QFLAG21', 'SFLAG21', 'VALUE22', 'MFLAG22', 'QFLAG22', 'SFLAG22', 'VALUE23', 'MFLAG23', 'QFLAG23', 'SFLAG23', 'VALUE24', 'MFLAG24', 'QFLAG24', 'SFLAG24', 'VALUE25', 'MFLAG25', 'QFLAG25', 'SFLAG25', 'VALUE26', 'MFLAG26', 'QFLAG26', 'SFLAG26', 'VALUE27', 'MFLAG27', 'QFLAG27', 'SFLAG27', 'VALUE28', 'MFLAG28', 'QFLAG28', 'SFLAG28', 'VALUE29', 'MFLAG29', 'QFLAG29', 'SFLAG29', 'VALUE30', 'MFLAG30', 'QFLAG30', 'SFLAG30', 'VALUE31', 'MFLAG31', 'QFLAG31', 'SFLAG31']

Now, the issue I have is that when reading in the data, there seem to be a lot of inf values, and those shouldn't be in the source data (the nearest thing in the data are -9999 values, which represent invalid data).

Normally, if I were using lists or the like, I would print out the whole thing to find alignment errors, and work out which rows are affected, then look at the source file to see what's happening. I'd like to know how to do the equivalent in pandas so I can figure out where these inf values are coming from.

Here's the code which shows me infs:

>>> tf[tf['ELEMENT']=='TMIN'].min()
COOP       300023
YEAR         1876
MONTH           1
ELEMENT      TMIN
VALUE1        -38
MFLAG1        inf
QFLAG1        inf
SFLAG1        inf
VALUE2        -34
MFLAG2        inf
QFLAG2        inf
SFLAG2        inf
VALUE3        -38
MFLAG3        inf
QFLAG3        inf
...
MFLAG28    inf
QFLAG28    inf
SFLAG28    inf
VALUE29    -46
MFLAG29    inf
QFLAG29    inf
SFLAG29    inf
VALUE30    -57
MFLAG30    inf
QFLAG30    inf
SFLAG30    inf
VALUE31    -40
MFLAG31    inf
QFLAG31    inf
SFLAG31    inf
Length: 128, dtype: object

Edit: Corrected column widths. Problem still remains.

like image 518
Marcin Avatar asked Jan 05 '14 15:01

Marcin


People also ask

How do you check is the any null values in pandas?

In order to check null values in Pandas DataFrame, we use isnull() function this function return dataframe of Boolean values which are True for NaN values.

How do I search for a specific string in pandas?

Pandas str. find() method is used to search a substring in each string present in a series. If the string is found, it returns the lowest index of its occurrence. If string is not found, it will return -1.

Which function used to get the statistical details of the DataFrame?

The describe() function computes a summary of statistics pertaining to the DataFrame columns. This function gives the mean, std and IQR values.


1 Answers

First, let's mock up some data:

import numpy as np
import pandas

df = pandas.DataFrame(
    np.random.normal(size=(5,5)), 
    index='rA,rB,rC,rD,rE'.split(','),
    columns='cA,cB,cC,cD,cE'.split(',')
)
df[df > 1] = np.inf
df

That, for examples, should give something like this:

          cA        cB        cC        cD        cE
rA -1.202383 -0.625521       inf -0.888086 -0.215671
rB  0.537521 -1.149731  0.841687  0.190505       inf
rC -1.447124 -0.607486 -1.268923       inf  0.438190
rD -0.275085  0.793483  0.276376 -0.095727 -0.050957
rE -0.095414  0.048926  0.591899  0.298865 -0.308620

So now I can use fancy indexing to isolate all the infs.

print(df[np.isinf(df)].to_string())

    cA  cB   cC   cD   cE
rA NaN NaN  inf  NaN  NaN
rB NaN NaN  NaN  NaN  inf
rC NaN NaN  NaN  inf  NaN
rD NaN NaN  NaN  NaN  NaN
rE NaN NaN  NaN  NaN  NaN

But that's not really useful. So on top of finding the infs, we should stack the column index into the rows (unpivot, if you will) then drop all the NaN values. This will give us a nice summary of the rows/columns with infs.

df[np.isinf(df)].stack().dropna()

rA  cC    inf
rB  cE    inf
rC  cD    inf
dtype: float64
like image 178
Paul H Avatar answered Oct 21 '22 11:10

Paul H