I'm trying to read a list of files and append them into a new file with all the records. I do not intend to change anything in the original files. I've tried couple of methods.
Method 1: This methods creates a new file but at each iteration the previous file gets added again. Because I'm binding the data frame recursively.
files <- list.files(pattern = "\\.csv$")
#temparary data frame to load the contents on the current file
temp_df <- data.frame(ModelName = character(), Object = character(),stringsAsFactors = F)
#reading each file within the range and append them to create one file
for (i in 1:length(files)){
#read the file
currentFile = read.csv(files[i])
#Append the current file
temp_df = rbind(temp_df, currentFile)
}
#writing the appended file
write.csv(temp_df,"Models_appended.csv",row.names = F,quote = F)
Method 2: I got this method from Rbloggers . This methods won't write to a new file but keeps on modifying the original file.
multmerge = function(){
filenames= list.files(pattern = "\\.csv$")
datalist = lapply(filenames, function(x){read.csv(file=x,header=T)})
Reduce(function(x,y) {merge(x,y)}, temp_df)
}
Can someone advice me on how to achieve my goal?
it could look like this:
files <- list.files(pattern = "\\.csv$")
DF <- read.csv(files[1])
#reading each file within the range and append them to create one file
for (f in files[-1]){
df <- read.csv(f) # read the file
DF <- rbind(DF, df) # append the current file
}
#writing the appended file
write.csv(DF, "Models_appended.csv", row.names=FALSE, quote=FALSE)
or short:
files <- list.files(pattern = "\\.csv$")
DF <- read.csv(files[1])
for (f in files[-1]) DF <- rbind(DF, read.csv(f))
write.csv(DF, "Models_appended.csv", row.names=FALSE, quote=FALSE)
You can use this to load everything into one data set.
dataset <- do.call("rbind", lapply(file.list, FUN = function(file) {
read.table(file, header=TRUE, sep="\t")
}))
And then just save with write.csv
.
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With