I have a set of data where I have recorded values in sets of 3 readings (so as to be able to obtain a general idea of the SEM). I have them recorded in a list that looks as follows, which I am trying to collapse into averages of each set of 3 points:
I want to collapse essentially each 3 rows into one row where the average data value is given for that set. In essence, it would look as follows:
This is something I know how to do basically in Excel (i.e. using a Pivot table) but I am not sure how to do the same in MATLAB. I have tried using accumarray
but struggle with knowing how to incorporate multiple conditions essentially. I would need to create a subs
array where its number corresponds to each unique set of 3 data points. By brute force, I could create an array such as:
subs = [1 1 1; 2 2 2; 3 3 3; 4 4 4; ...]'
using some looping and have that as my subs array, but since it isn't tied to the data itself, and there may be strange hiccups throughout (i.e. more than 3 data points per set, or missing data, etc.). I know there must be some way to have this sort of Pivot-table-esque grouping for something like this, but need some help to get it off the ground. Thanks.
Here is the input data in text form:
Subject Flow On/Off Values
1 10 1 2.20
1 10 1 2.50
1 10 1 2.60
1 20 1 5.50
1 20 1 6.10
1 20 1 5.90
1 30 1 10.10
1 30 1 10.50
1 30 1 10.50
1 10 0 1.90
1 10 0 2.20
1 10 0 2.30
1 20 0 5.20
1 20 0 5.80
1 20 0 5.60
1 30 0 9.80
1 30 0 10.20
1 30 0 10.20
2 10 1 5.70
2 10 1 6.00
2 10 1 6.10
2 20 1 9.00
2 20 1 9.60
2 20 1 9.40
2 30 1 13.60
2 30 1 14.00
2 30 1 14.00
2 10 0 5.40
2 10 0 5.70
2 10 0 5.80
2 20 0 8.70
2 20 0 9.30
2 20 0 9.10
2 30 0 13.30
2 30 0 13.70
2 30 0 13.70
You can use unique
and accumarray
like so to maintain the order of your rows of data:
[newData, ~, subs] = unique(data(:, 1:3), 'rows', 'stable');
newData(:, 4) = accumarray(subs, data(:, 4), [], @mean);
newData =
1.0000 10.0000 1.0000 2.4333
1.0000 20.0000 1.0000 5.8333
1.0000 30.0000 1.0000 10.3667
1.0000 10.0000 0 2.1333
1.0000 20.0000 0 5.5333
1.0000 30.0000 0 10.0667
2.0000 10.0000 1.0000 5.9333
2.0000 20.0000 1.0000 9.3333
2.0000 30.0000 1.0000 13.8667
2.0000 10.0000 0 5.6333
2.0000 20.0000 0 9.0333
2.0000 30.0000 0 13.5667
I assume that
Then, denoting your data as x
,
[~, ~, subs] = unique(x(:, [1 3 2]), 'rows', 'sorted');
result = accumarray(subs, x(:,end), [], @mean);
gives
result =
2.1333
5.5333
10.0667
2.4333
5.8333
10.3667
5.6333
9.0333
13.5667
5.9333
9.3333
13.8667
As you see, I am using the third output of unique
with the 'rows'
and 'sorted'
options. This creates the subs
grouping vector based on first three columns of your data in the desired order. Then, passing that to accumarray
computes the means.
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With