Logo Questions Linux Laravel Mysql Ubuntu Git Menu
 

How does the tf.scatter_update() work inside the while_loop()

Tags:

tensorflow

I am trying to update a tf.Variable inside a tf.while_loop(), using tf.scatter_update(). However, the result is the initial value instead of the updated value. Here is the sample code of what I am trying to do:

from __future__ import print_function

import tensorflow as tf

def cond(sequence_len, step):
    return tf.less(step,sequence_len)

def body(sequence_len, step): 

    begin = tf.get_variable("begin",[3],dtype=tf.int32,initializer=tf.constant_initializer(0))
    begin = tf.scatter_update(begin,1,step,use_locking=None)

    tf.get_variable_scope().reuse_variables()
   return (sequence_len, step+1)

with tf.Graph().as_default():

    sess = tf.Session()
    step = tf.constant(0)
    sequence_len  = tf.constant(10)
    _,step, = tf.while_loop(cond,
                    body,
                    [sequence_len, step], 
                    parallel_iterations=10, 
                    back_prop=True, 
                    swap_memory=False, 
                    name=None)

    begin = tf.get_variable("begin",[3],dtype=tf.int32)

    init = tf.initialize_all_variables()
    sess.run(init)

    print(sess.run([begin,step]))

The result is: [array([0, 0, 0], dtype=int32), 10]. However, I think the result should be [0, 0, 10]. Am I doing something wrong here?

like image 896
akshaybetala Avatar asked May 06 '16 02:05

akshaybetala


1 Answers

The problem here is that nothing in the loop body depends on your tf.scatter_update() op, so it is never executed. The easiest way to make it work is to add a control dependency on the update to the return values:

def body(sequence_len, step): 
    begin = tf.get_variable("begin",[3],dtype=tf.int32,initializer=tf.constant_initializer(0))
    begin = tf.scatter_update(begin, 1, step, use_locking=None)
    tf.get_variable_scope().reuse_variables()

    with tf.control_dependencies([begin]):
        return (sequence_len, step+1)

Note that this problem isn't unique to loops in TensorFlow. If you had just defined an tf.scatter_update() op called begin but call sess.run() on it, or something that depends on it, then the update won't happen. When you're using the tf.while_loop() there's no way to run the operations defined in the loop body directly, so the easiest way to get a side effect is to add a control dependency.

Note that the final result is [0, 9, 0]: each iteration assigns the current step to begin[1], and in the last iteration the value of the current step is 9 (the condition is false when step == 10).

like image 179
mrry Avatar answered Oct 15 '22 12:10

mrry