Using the MNIST tutorial of Tensorflow, I try to make a convolutional network for face recognition with the "Database of Faces".
The images size are 112x92, I use 3 more convolutional layer to reduce it to 6 x 5 as adviced here
I'm very new at convolutional network and most of my layer declaration is made by analogy to the Tensorflow MNIST tutorial, it may be a bit clumsy, so feel free to advice me on this.
x_image = tf.reshape(x, [-1, 112, 92, 1])
h_conv1 = tf.nn.relu(conv2d(x_image, W_conv1) + b_conv1)
h_pool1 = max_pool_2x2(h_conv1)
W_conv2 = weight_variable([5, 5, 32, 64])
b_conv2 = bias_variable([64])
h_conv2 = tf.nn.relu(conv2d(h_pool1, W_conv2) + b_conv2)
h_pool2 = max_pool_2x2(h_conv2)
W_conv3 = weight_variable([5, 5, 64, 128])
b_conv3 = bias_variable([128])
h_conv3 = tf.nn.relu(conv2d(h_pool2, W_conv3) + b_conv3)
h_pool3 = max_pool_2x2(h_conv3)
W_conv4 = weight_variable([5, 5, 128, 256])
b_conv4 = bias_variable([256])
h_conv4 = tf.nn.relu(conv2d(h_pool3, W_conv4) + b_conv4)
h_pool4 = max_pool_2x2(h_conv4)
W_conv5 = weight_variable([5, 5, 256, 512])
b_conv5 = bias_variable([512])
h_conv5 = tf.nn.relu(conv2d(h_pool4, W_conv5) + b_conv5)
h_pool5 = max_pool_2x2(h_conv5)
W_fc1 = weight_variable([6 * 5 * 512, 1024])
b_fc1 = bias_variable([1024])
h_pool5_flat = tf.reshape(h_pool5, [-1, 6 * 5 * 512])
h_fc1 = tf.nn.relu(tf.matmul(h_pool5_flat, W_fc1) + b_fc1)
keep_prob = tf.placeholder("float")
h_fc1_drop = tf.nn.dropout(h_fc1, keep_prob)
print orlfaces.train.num_classes # 40
W_fc2 = weight_variable([1024, orlfaces.train.num_classes])
b_fc2 = bias_variable([orlfaces.train.num_classes])
y_conv = tf.nn.softmax(tf.matmul(h_fc1_drop, W_fc2) + b_fc2)
My problem appear when the session run the "correct_prediction" op which is
tf.equal(tf.argmax(y_conv, 1), tf.argmax(y_, 1))
At least I think given the error message:
W tensorflow/core/common_runtime/executor.cc:1027] 0x19369d0 Compute status: Invalid argument: Incompatible shapes: [8] vs. [20]
[[Node: Equal = Equal[T=DT_INT64, _device="/job:localhost/replica:0/task:0/cpu:0"](ArgMax, ArgMax_1)]]
Traceback (most recent call last):
File "./convolutional.py", line 133, in <module>
train_accuracy = accuracy.eval(feed_dict = {x: batch[0], y_: batch[1], keep_prob: 1.0})
File "/usr/local/lib/python2.7/dist-packages/tensorflow/python/framework/ops.py", line 405, in eval
return _eval_using_default_session(self, feed_dict, self.graph, session)
File "/usr/local/lib/python2.7/dist-packages/tensorflow/python/framework/ops.py", line 2728, in _eval_using_default_session
return session.run(tensors, feed_dict)
File "/usr/local/lib/python2.7/dist-packages/tensorflow/python/client/session.py", line 345, in run
results = self._do_run(target_list, unique_fetch_targets, feed_dict_string)
File "/usr/local/lib/python2.7/dist-packages/tensorflow/python/client/session.py", line 419, in _do_run
e.code)
tensorflow.python.framework.errors.InvalidArgumentError: Incompatible shapes: [8] vs. [20]
[[Node: Equal = Equal[T=DT_INT64, _device="/job:localhost/replica:0/task:0/cpu:0"](ArgMax, ArgMax_1)]]
Caused by op u'Equal', defined at:
File "./convolutional.py", line 125, in <module>
correct_prediction = tf.equal(tf.argmax(y_conv, 1), tf.argmax(y_, 1))
File "/usr/local/lib/python2.7/dist-packages/tensorflow/python/ops/gen_math_ops.py", line 328, in equal
return _op_def_lib.apply_op("Equal", x=x, y=y, name=name)
File "/usr/local/lib/python2.7/dist-packages/tensorflow/python/ops/op_def_library.py", line 633, in apply_op
op_def=op_def)
File "/usr/local/lib/python2.7/dist-packages/tensorflow/python/framework/ops.py", line 1710, in create_op
original_op=self._default_original_op, op_def=op_def)
File "/usr/local/lib/python2.7/dist-packages/tensorflow/python/framework/ops.py", line 988, in __init__
self._traceback = _extract_stack()
It looks like the y_conv output a matrix of shape 8 x batch_size instead of number_of_class x batch_size
If I change the batch size from 20 to 10, the error message stay the same but instead [8] vs. [20] I get [4] vs. [10]. So from that I conclude that the problem may come from the y_conv declaration (last line of the code above).
The loss function, optimizer, training, etc declarations is the same as in the MNIST tutorial:
cross_entropy = -tf.reduce_sum(y_ * tf.log(y_conv))
train_step = tf.train.AdamOptimizer(1e-4).minimize(cross_entropy)
correct_prediction = tf.equal(tf.argmax(y_conv, 1), tf.argmax(y_, 1))
accuracy = tf.reduce_mean(tf.cast(correct_prediction, "float"))
sess.run((tf.initialize_all_variables()))
for i in xrange(1000):
batch = orlfaces.train.next_batch(20)
if i % 100 == 0:
train_accuracy = accuracy.eval(feed_dict = {x: batch[0], y_: batch[1], keep_prob: 1.0})
print "Step %d, training accuracy %g" % (i, train_accuracy)
train_step.run(feed_dict = {x: batch[0], y_: batch[1], keep_prob: 0.5})
print "Test accuracy %g" % accuracy.eval(feed_dict = {x: orlfaces.test.images, y_: orlfaces.test.labels, keep_prob: 1.0})
Thanks for reading, have a good day
Well, after a lot debugging, I found that my issue was due to a bad instantiation of the labels. Instead of creating arrays full of zeros and replace one value by one, I created them with random value! Stupid mistake. In case someone wondering what I did wrong there and how I fix it here is the change I made.
Anyway during all the debugging I made, to find this mistake, I found some useful information to debug this kind of problem:
This formula is
cross_entropy = -tf.reduce_sum(y_ * tf.log(y_conv))
Instead of this, I found two ways to declare it in a safer fashion:
cross_entropy = -tf.reduce_sum(y_ * tf.log(tf.clip_by_value(y_conv, 1e-10, 1.0)))
or also:
cross_entropy = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(logit, y_))
To get the shape of a tensor just call his get_shape() method like this:
print "W shape:", W.get_shape()
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With