Here is a method -
using System;
class Program
{
static void Main(string[] args)
{
//
// Create an array of four bytes.
// ... Then convert it into an integer and unsigned integer.
//
byte[] array = new byte[4];
array[0] = 1; // Lowest
array[1] = 64;
array[2] = 0;
array[3] = 0; // Sign bit
//
// Use BitConverter to convert the bytes to an int and a uint.
// ... The int and uint can have different values if the sign bit differs.
//
int result1 = BitConverter.ToInt32(array, 0); // Start at first index
uint result2 = BitConverter.ToUInt32(array, 0); // First index
Console.WriteLine(result1);
Console.WriteLine(result2);
Console.ReadLine();
}
}
Output
16385 16385
I just want to know how this is happening?
The docs for BitConverter.ToInt32
actually have some pretty good examples. Assuming BitConverter.IsLittleEndian
returns true, array[0]
is the least significant byte, as you've shown... although array[3]
isn't just the sign bit, it's the most significant byte which includes the sign bit (as bit 7) but the rest of the bits are for magnitude.
So in your case, the least significant byte is 1, and the next byte is 64 - so the result is:
( 1 * (1 << 0) ) + // Bottom 8 bits
(64 * (1 << 8) ) + // Next 8 bits, i.e. multiply by 256
( 0 * (1 << 16)) + // Next 8 bits, i.e. multiply by 65,536
( 0 * (1 << 24)) // Top 7 bits and sign bit, multiply by 16,777,216
which is 16385. If the sign bit were set, you'd need to consider the two cases differently, but in this case it's simple.
It converts like it was a number in base 256. So in your case : 1+64*256 = 16385
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With