I've got a string, a signature, and a public key, and I want to verify the signature on the string. The key looks like this:
-----BEGIN PUBLIC KEY----- MIGfMA0GCSqGSIb3DQEBAQUAA4GNADCBiQKBgQDfG4IuFO2h/LdDNmonwGNw5srW nUEWzoBrPRF1NM8LqpOMD45FAPtZ1NmPtHGo0BAS1UsyJEGXx0NPJ8Gw1z+huLrl XnAVX5B4ec6cJfKKmpL/l94WhP2v8F3OGWrnaEX1mLMoxe124Pcfamt0SPCGkeal VvXw13PLINE/YptjkQIDAQAB -----END PUBLIC KEY-----
I've been reading the pycrypto docs for a while, but I can't figure out how to make an RSAobj with this kind of key. If you know PHP, I'm trying to do the following:
openssl_verify($data, $signature, $public_key, OPENSSL_ALGO_SHA1);
Also, if I'm confused about any terminology, please let me know.
Use M2Crypto. Here's how to verify for RSA and any other algorithm supported by OpenSSL:
pem = """-----BEGIN PUBLIC KEY----- MIGfMA0GCSqGSIb3DQEBAQUAA4GNADCBiQKBgQDfG4IuFO2h/LdDNmonwGNw5srW nUEWzoBrPRF1NM8LqpOMD45FAPtZ1NmPtHGo0BAS1UsyJEGXx0NPJ8Gw1z+huLrl XnAVX5B4ec6cJfKKmpL/l94WhP2v8F3OGWrnaEX1mLMoxe124Pcfamt0SPCGkeal VvXw13PLINE/YptjkQIDAQAB -----END PUBLIC KEY-----""" # your example key from M2Crypto import BIO, RSA, EVP bio = BIO.MemoryBuffer(pem) rsa = RSA.load_pub_key_bio(bio) pubkey = EVP.PKey() pubkey.assign_rsa(rsa) # if you need a different digest than the default 'sha1': pubkey.reset_context(md='sha1') pubkey.verify_init() pubkey.verify_update('test message') assert pubkey.verify_final(signature) == 1
The data between the markers is the base64 encoding of the ASN.1 DER-encoding of a PKCS#8 PublicKeyInfo containing an PKCS#1 RSAPublicKey.
That is a lot of standards, and you will be best served with using a crypto-library to decode it (such as M2Crypto as suggested by joeforker). Treat the following as some fun info about the format:
If you want to, you can decode it like this:
Base64-decode the string:
30819f300d06092a864886f70d010101050003818d0030818902818100df1b822e14eda1fcb74336 6a27c06370e6cad69d4116ce806b3d117534cf0baa938c0f8e4500fb59d4d98fb471a8d01012d54b 32244197c7434f27c1b0d73fa1b8bae55e70155f907879ce9c25f28a9a92ff97de1684fdaff05dce 196ae76845f598b328c5ed76e0f71f6a6b7448f08691e6a556f5f0d773cb20d13f629b6391020301 0001
This is the DER-encoding of:
0 30 159: SEQUENCE { 3 30 13: SEQUENCE { 5 06 9: OBJECT IDENTIFIER rsaEncryption (1 2 840 113549 1 1 1) 16 05 0: NULL : } 18 03 141: BIT STRING 0 unused bits, encapsulates { 22 30 137: SEQUENCE { 25 02 129: INTEGER : 00 DF 1B 82 2E 14 ED A1 FC B7 43 36 6A 27 C0 63 : 70 E6 CA D6 9D 41 16 CE 80 6B 3D 11 75 34 CF 0B : AA 93 8C 0F 8E 45 00 FB 59 D4 D9 8F B4 71 A8 D0 : 10 12 D5 4B 32 24 41 97 C7 43 4F 27 C1 B0 D7 3F : A1 B8 BA E5 5E 70 15 5F 90 78 79 CE 9C 25 F2 8A : 9A 92 FF 97 DE 16 84 FD AF F0 5D CE 19 6A E7 68 : 45 F5 98 B3 28 C5 ED 76 E0 F7 1F 6A 6B 74 48 F0 : 86 91 E6 A5 56 F5 F0 D7 73 CB 20 D1 3F 62 9B 63 : 91 157 02 3: INTEGER 65537 : } : } : }
For a 1024 bit RSA key, you can treat "30819f300d06092a864886f70d010101050003818d00308189028181"
as a constant header, followed by a 00-byte, followed by the 128 bytes of the RSA modulus. After that 95% of the time you will get 0203010001
, which signifies a RSA public exponent of 0x10001 = 65537.
You can use those two values as n
and e
in a tuple to construct a RSAobj.
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With