Logo Questions Linux Laravel Mysql Ubuntu Git Menu
 

How do you create an asynchronous method in C#?

People also ask

What is asynchronous in C?

In computer programming, the async/await pattern is a syntactic feature of many programming languages that allows an asynchronous, non-blocking function to be structured in a way similar to an ordinary synchronous function.

What is asynchronous programming example?

Here's an example: Data may take long a long time to submit to a database. With asynchronous programming, the user can move to another screen while the function continues to execute. When a photo is loaded and sent on Instagram, the user does not have to stay on the same screen waiting for the photo to finish loading.

What is async function in C#?

An async method runs synchronously until it reaches its first await expression, at which point the method is suspended until the awaited task is complete. In the meantime, control returns to the caller of the method, as the example in the next section shows.

When an asynchronous method is executed?

When a asynchronous method is executed, the code runs but nothing happens other than a compiler warning.


I don't recommend StartNew unless you need that level of complexity.

If your async method is dependent on other async methods, the easiest approach is to use the async keyword:

private static async Task<DateTime> CountToAsync(int num = 10)
{
  for (int i = 0; i < num; i++)
  {
    await Task.Delay(TimeSpan.FromSeconds(1));
  }

  return DateTime.Now;
}

If your async method is doing CPU work, you should use Task.Run:

private static async Task<DateTime> CountToAsync(int num = 10)
{
  await Task.Run(() => ...);
  return DateTime.Now;
}

You may find my async/await intro helpful.


If you didn't want to use async/await inside your method, but still "decorate" it so as to be able to use the await keyword from outside, TaskCompletionSource.cs:

public static Task<T> RunAsync<T>(Func<T> function)
{ 
    if (function == null) throw new ArgumentNullException(“function”); 
    var tcs = new TaskCompletionSource<T>(); 
    ThreadPool.QueueUserWorkItem(_ =>          
    { 
        try 
        {  
           T result = function(); 
           tcs.SetResult(result);  
        } 
        catch(Exception exc) { tcs.SetException(exc); } 
   }); 
   return tcs.Task; 
}

From here and here

To support such a paradigm with Tasks, we need a way to retain the Task façade and the ability to refer to an arbitrary asynchronous operation as a Task, but to control the lifetime of that Task according to the rules of the underlying infrastructure that’s providing the asynchrony, and to do so in a manner that doesn’t cost significantly. This is the purpose of TaskCompletionSource.

I saw it's also used in the .NET source, e.g. WebClient.cs:

    [HostProtection(ExternalThreading = true)]
    [ComVisible(false)]
    public Task<string> UploadStringTaskAsync(Uri address, string method, string data)
    {
        // Create the task to be returned
        var tcs = new TaskCompletionSource<string>(address);

        // Setup the callback event handler
        UploadStringCompletedEventHandler handler = null;
        handler = (sender, e) => HandleCompletion(tcs, e, (args) => args.Result, handler, (webClient, completion) => webClient.UploadStringCompleted -= completion);
        this.UploadStringCompleted += handler;

        // Start the async operation.
        try { this.UploadStringAsync(address, method, data, tcs); }
        catch
        {
            this.UploadStringCompleted -= handler;
            throw;
        }

        // Return the task that represents the async operation
        return tcs.Task;
    }

Finally, I also found the following useful:

I get asked this question all the time. The implication is that there must be some thread somewhere that’s blocking on the I/O call to the external resource. So, asynchronous code frees up the request thread, but only at the expense of another thread elsewhere in the system, right? No, not at all.

To understand why asynchronous requests scale, I’ll trace a (simplified) example of an asynchronous I/O call. Let’s say a request needs to write to a file. The request thread calls the asynchronous write method. WriteAsync is implemented by the Base Class Library (BCL), and uses completion ports for its asynchronous I/O. So, the WriteAsync call is passed down to the OS as an asynchronous file write. The OS then communicates with the driver stack, passing along the data to write in an I/O request packet (IRP).

This is where things get interesting: If a device driver can’t handle an IRP immediately, it must handle it asynchronously. So, the driver tells the disk to start writing and returns a “pending” response to the OS. The OS passes that “pending” response to the BCL, and the BCL returns an incomplete task to the request-handling code. The request-handling code awaits the task, which returns an incomplete task from that method and so on. Finally, the request-handling code ends up returning an incomplete task to ASP.NET, and the request thread is freed to return to the thread pool.

Introduction to Async/Await on ASP.NET

If the target is to improve scalability (rather than responsiveness), it all relies on the existence of an external I/O that provides the opportunity to do that.


One very simple way to make a method asynchronous is to use Task.Yield() method. As MSDN states:

You can use await Task.Yield(); in an asynchronous method to force the method to complete asynchronously.

Insert it at beginning of your method and it will then return immediately to the caller and complete the rest of the method on another thread.

private async Task<DateTime> CountToAsync(int num = 1000)
{
    await Task.Yield();
    for (int i = 0; i < num; i++)
    {
        Console.WriteLine("#{0}", i);
    }
    return DateTime.Now;
}