Insertion: Insertion in array of vectors is done using push_back() function. Above pseudo-code inserts element 35 at every index of vector <int> A[n]. Traversal: Traversal in an array of vectors is perform using iterators.
In C++ an array can be copied manually (by hand) or by using the std::copy() function, from the C++ algorithm library. In computer programming, there is shallow copying and there is deep copying. Shallow copying is when two different array names (old and new), refer to the same content.
The syntax for assigning values from an array or list: vectorname. assign(arr, arr + size) Parameters: arr - the array which is to be assigned to a vector size - number of elements from the beginning which has to be assigned.
There have been many answers here and just about all of them will get the job done.
However there is some misleading advice!
Here are the options:
vector<int> dataVec;
int dataArray[] = { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 };
unsigned dataArraySize = sizeof(dataArray) / sizeof(int);
// Method 1: Copy the array to the vector using back_inserter.
{
copy(&dataArray[0], &dataArray[dataArraySize], back_inserter(dataVec));
}
// Method 2: Same as 1 but pre-extend the vector by the size of the array using reserve
{
dataVec.reserve(dataVec.size() + dataArraySize);
copy(&dataArray[0], &dataArray[dataArraySize], back_inserter(dataVec));
}
// Method 3: Memcpy
{
dataVec.resize(dataVec.size() + dataArraySize);
memcpy(&dataVec[dataVec.size() - dataArraySize], &dataArray[0], dataArraySize * sizeof(int));
}
// Method 4: vector::insert
{
dataVec.insert(dataVec.end(), &dataArray[0], &dataArray[dataArraySize]);
}
// Method 5: vector + vector
{
vector<int> dataVec2(&dataArray[0], &dataArray[dataArraySize]);
dataVec.insert(dataVec.end(), dataVec2.begin(), dataVec2.end());
}
To cut a long story short Method 4, using vector::insert, is the best for bsruth's scenario.
Here are some gory details:
Method 1 is probably the easiest to understand. Just copy each element from the array and push it into the back of the vector. Alas, it's slow. Because there's a loop (implied with the copy function), each element must be treated individually; no performance improvements can be made based on the fact that we know the array and vectors are contiguous blocks.
Method 2 is a suggested performance improvement to Method 1; just pre-reserve the size of the array before adding it. For large arrays this might help. However the best advice here is never to use reserve unless profiling suggests you may be able to get an improvement (or you need to ensure your iterators are not going to be invalidated). Bjarne agrees. Incidentally, I found that this method performed the slowest most of the time though I'm struggling to comprehensively explain why it was regularly significantly slower than method 1...
Method 3 is the old school solution - throw some C at the problem! Works fine and fast for POD types. In this case resize is required to be called since memcpy works outside the bounds of vector and there is no way to tell a vector that its size has changed. Apart from being an ugly solution (byte copying!) remember that this can only be used for POD types. I would never use this solution.
Method 4 is the best way to go. It's meaning is clear, it's (usually) the fastest and it works for any objects. There is no downside to using this method for this application.
Method 5 is a tweak on Method 4 - copy the array into a vector and then append it. Good option - generally fast-ish and clear.
Finally, you are aware that you can use vectors in place of arrays, right? Even when a function expects c-style arrays you can use vectors:
vector<char> v(50); // Ensure there's enough space
strcpy(&v[0], "prefer vectors to c arrays");
Hope that helps someone out there!
If you can construct the vector after you've gotten the array and array size, you can just say:
std::vector<ValueType> vec(a, a + n);
...assuming a
is your array and n
is the number of elements it contains. Otherwise, std::copy()
w/resize()
will do the trick.
I'd stay away from memcpy()
unless you can be sure that the values are plain-old data (POD) types.
Also, worth noting that none of these really avoids the for loop--it's just a question of whether you have to see it in your code or not. O(n) runtime performance is unavoidable for copying the values.
Finally, note that C-style arrays are perfectly valid containers for most STL algorithms--the raw pointer is equivalent to begin()
, and (ptr + n
) is equivalent to end()
.
If all you are doing is replacing the existing data, then you can do this
std::vector<int> data; // evil global :)
void CopyData(int *newData, size_t count)
{
data.assign(newData, newData + count);
}
std::copy is what you're looking for.
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With