When looking for a size of an array in a for loop I've seen people write
int arr[10]; for(int i = 0; i < sizeof(arr) / sizeof(arr[0]); i++){}
How is sizeof(arr) / sizeof(arr[0])
the length of the array? How does it technically work?
The sizeof() operator returns pointer size instead of array size. The 'sizeof' operator returns size of a pointer, not of an array, when the array was passed by value to a function. In this code, the A object is an array and the sizeof(A) expression will return value 100. The B object is simply a pointer.
How to access element of an array in C. You can use array subscript (or index) to access any element stored in array. Subscript starts with 0, which means arr[0] represents the first element in the array arr. In general arr[n-1] can be used to access nth element of an array.
meaning of sizeof(a) and sizeof(a[0]) sizeof(a) is the size (in bytes) of its operand, in this case, an array called a . sizeof(a[0]) is the size (in bytes) of its operand, in this case, a single element of the array. ... to calculate the number of elements in an array.
If you have an array
then sizeof(array)
returns the number of bytes the array occupies. Since each element can take more than 1 byte of space, you have to divide the result with the size of one element (sizeof(array[0])
). This gives you number of elements in the array.
Example:
std::uint32_t array[10]; auto sizeOfInt = sizeof(std::uint32_t); // 4 auto numOfBytes = sizeof(array); // 10*sizeOfInt = 40 auto sizeOfElement = sizeof(array[0]); // sizeOfInt = 4 auto numOfElements = sizeof(array) / sizeof(array[0]); // numOfBytes / sizeOfElement = 40 / 4 = 10
LIVE EXAMPLE
Note that if you pass an array to a function, the above won't work since the array decays to a pointer and sizeof(array)
returns the size of the pointer.
std::size_t function(std::uint32_t a[]) // same for void function(std::uint32_t a[10]) { return sizeof(a); // sizeof(std::uint32_t*)! } std::uint32_t array[10]; auto sizeOfArray = function(array); // array decays to a pointer inside function()
LIVE EXAMPLE #2
As it is described in the C++ Standard (5.3.3 Sizeof)
1 The sizeof operator yields the number of bytes in the object representation of its operand. The operand is either an expression, which is an unevaluated operand (Clause 5), or a parenthesized type-id.
In this expression
sizeof(arr) / sizeof(arr[0])
there are used two subexpressions with the sizeof operator.
This subexpression
sizeof(arr)
yields the number of bytes occupied by array arr
(I suppose that arr
is an array).
For example if you declared an array like
int arr[10];
then the compiler has to reserve memory that to hold 10 elements of type int. If for example sizeof( int )
is equal to 4 then the compiler will reserve 10 * 4 = 40 bytes of memory.
Subexpression
sizeof(arr[0])
gives the number of bytes occupied by one element in the array. You could use any index as for example
sizeof(arr[1000])
because the expression is unevaluated. It is only important the size in bytes of the object (an element of the array) used inside the operator.
Thus if you know the total bytes that were reserved for an array
sizeof(arr)
and know how many bytes each element of the array occupies (all elements of an array have the same size) then you can calculate the number of elements in the array by using the formula
sizeof(arr) / sizeof(arr[0])
Here is a simple relation. If you have an array of N elements of type T
T arr[N];
and you know the size of the memory occupied by the array then you can calculate the size of its element by using formula
sizeof( arr ) / N == size of an element of the array.
And vice verse
If you know the size of the memory occupied by the array and the size of its element you can calculate the number of elements in the array
sizeof( arr ) / sizeof( a[0] ) == N - number of elements in the array
The last expression you can rewrite also the following way
sizeof( arr ) / sizeof( T ) == N - number of elements in the array
because the elements of the array have type T and each element of the array occupies exactly the number of bytes that are required to allocate an object of type T.
Take into acccount that usually beginners make such an error. They pass an array as an argument to a function. For example let's assume that you have a function
void f( int a[] ) { // ... }
And you pass to the function your array
int arr[10]; f(arr);
then the function uses the pointer to the first element of the array. In fact the function has declaration
void f( int *a ) { // ... }
So if you write for example within the function
void f( int *a ) { size_t n = sizeof( a ) / sizeof( a[0] ); // ... }
then as a
within the function is a pointer (it is not an array) then you will get something like
void f( int *a ) { size_t n = sizeof( int * ) / sizeof( int ); // ... }
Usually the size of a pointer equal to either 8 or 4 bytes depending of the used environment. And you won't get the number of elements. You will get some weird value.
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With