Logo Questions Linux Laravel Mysql Ubuntu Git Menu
 

How do I search for a number in a 2d array sorted left to right and top to bottom?

I was recently given this interview question and I'm curious what a good solution to it would be.

Say I'm given a 2d array where all the numbers in the array are in increasing order from left to right and top to bottom.

What is the best way to search and determine if a target number is in the array?

Now, my first inclination is to utilize a binary search since my data is sorted. I can determine if a number is in a single row in O(log N) time. However, it is the 2 directions that throw me off.

Another solution I thought may work is to start somewhere in the middle. If the middle value is less than my target, then I can be sure it is in the left square portion of the matrix from the middle. I then move diagonally and check again, reducing the size of the square that the target could potentially be in until I have honed in on the target number.

Does anyone have any good ideas on solving this problem?

Example array:

Sorted left to right, top to bottom.

1  2  4  5  6   2  3  5  7  8   4  6  8  9  10   5  8  9  10 11   
like image 779
Phukab Avatar asked Mar 16 '10 20:03

Phukab


People also ask

How do you sort a 2D array using sort function?

Ways to Sort a 2D Vector In sort(), it generally takes two parameters, the first one being the point of the array/vector from where the sorting needs to begin and the second parameter being the length up to which we want the array/vector to get sorted. This function is included in <algorithm> header file.

How do you sort numbers in 2D arrays?

Make the 2D array into a separate simple (1D) array (STEP 1). Then use the Arrays. sort() method to sort the simple array (STEP 2). Then set each space of the 2D array to be the number of columns across (X-coordinate where the space will be changed) multiplied by the number of spaces per row in the 2D array.


1 Answers

Here's a simple approach:

  1. Start at the bottom-left corner.
  2. If the target is less than that value, it must be above us, so move up one.
  3. Otherwise we know that the target can't be in that column, so move right one.
  4. Goto 2.

For an NxM array, this runs in O(N+M). I think it would be difficult to do better. :)


Edit: Lots of good discussion. I was talking about the general case above; clearly, if N or M are small, you could use a binary search approach to do this in something approaching logarithmic time.

Here are some details, for those who are curious:

History

This simple algorithm is called a Saddleback Search. It's been around for a while, and it is optimal when N == M. Some references:

  • David Gries, The Science of Programming. Springer-Verlag, 1989.
  • Edsgar Dijkstra, The Saddleback Search. Note EWD-934, 1985.

However, when N < M, intuition suggests that binary search should be able to do better than O(N+M): For example, when N == 1, a pure binary search will run in logarithmic rather than linear time.

Worst-case bound

Richard Bird examined this intuition that binary search could improve the Saddleback algorithm in a 2006 paper:

  • Richard S. Bird, Improving Saddleback Search: A Lesson in Algorithm Design, in Mathematics of Program Construction, pp. 82--89, volume 4014, 2006.

Using a rather unusual conversational technique, Bird shows us that for N <= M, this problem has a lower bound of Ω(N * log(M/N)). This bound make sense, as it gives us linear performance when N == M and logarithmic performance when N == 1.

Algorithms for rectangular arrays

One approach that uses a row-by-row binary search looks like this:

  1. Start with a rectangular array where N < M. Let's say N is rows and M is columns.
  2. Do a binary search on the middle row for value. If we find it, we're done.
  3. Otherwise we've found an adjacent pair of numbers s and g, where s < value < g.
  4. The rectangle of numbers above and to the left of s is less than value, so we can eliminate it.
  5. The rectangle below and to the right of g is greater than value, so we can eliminate it.
  6. Go to step (2) for each of the two remaining rectangles.

In terms of worst-case complexity, this algorithm does log(M) work to eliminate half the possible solutions, and then recursively calls itself twice on two smaller problems. We do have to repeat a smaller version of that log(M) work for every row, but if the number of rows is small compared to the number of columns, then being able to eliminate all of those columns in logarithmic time starts to become worthwhile.

This gives the algorithm a complexity of T(N,M) = log(M) + 2 * T(M/2, N/2), which Bird shows to be O(N * log(M/N)).

Another approach posted by Craig Gidney describes an algorithm similar the approach above: it examines a row at a time using a step size of M/N. His analysis shows that this results in O(N * log(M/N)) performance as well.

Performance Comparison

Big-O analysis is all well and good, but how well do these approaches work in practice? The chart below examines four algorithms for increasingly "square" arrays:

algorithm performance vs squareness

(The "naive" algorithm simply searches every element of the array. The "recursive" algorithm is described above. The "hybrid" algorithm is an implementation of Gidney's algorithm. For each array size, performance was measured by timing each algorithm over fixed set of 1,000,000 randomly-generated arrays.)

Some notable points:

  • As expected, the "binary search" algorithms offer the best performance on rectangular arrays and the Saddleback algorithm works the best on square arrays.
  • The Saddleback algorithm performs worse than the "naive" algorithm for 1-d arrays, presumably because it does multiple comparisons on each item.
  • The performance hit that the "binary search" algorithms take on square arrays is presumably due to the overhead of running repeated binary searches.

Summary

Clever use of binary search can provide O(N * log(M/N) performance for both rectangular and square arrays. The O(N + M) "saddleback" algorithm is much simpler, but suffers from performance degradation as arrays become increasingly rectangular.

like image 145
Nate Kohl Avatar answered Sep 24 '22 12:09

Nate Kohl