I am following a tutorial on DCGAN. Whenever I try to load the CelebA dataset, torchvision uses up all my run-time's memory(12GB) and the runtime crashes. Am looking for ways on how I can load and apply transformations to the dataset without hogging my run-time's resources.
Here is the part of the code that is causing issues.
# Root directory for the dataset
data_root = 'data/celeba'
# Spatial size of training images, images are resized to this size.
image_size = 64
celeba_data = datasets.CelebA(data_root,
download=True,
transform=transforms.Compose([
transforms.Resize(image_size),
transforms.CenterCrop(image_size),
transforms.ToTensor(),
transforms.Normalize(mean=[0.5, 0.5, 0.5],
std=[0.5, 0.5, 0.5])
]))
The full notebook can be found here
PyTorch version: 1.7.1+cu101
Is debug build: False
CUDA used to build PyTorch: 10.1
ROCM used to build PyTorch: N/A
OS: Ubuntu 18.04.5 LTS (x86_64)
GCC version: (Ubuntu 7.5.0-3ubuntu1~18.04) 7.5.0
Clang version: 6.0.0-1ubuntu2 (tags/RELEASE_600/final)
CMake version: version 3.12.0
Python version: 3.6 (64-bit runtime)
Is CUDA available: True
CUDA runtime version: 10.1.243
GPU models and configuration: GPU 0: Tesla T4
Nvidia driver version: 418.67
cuDNN version: /usr/lib/x86_64-linux-gnu/libcudnn.so.7.6.5
HIP runtime version: N/A
MIOpen runtime version: N/A
Versions of relevant libraries:
Some of the things I have tried are:
# Download the dataset only
datasets.CelebA(data_root, download=True)
# Load the dataset here
celeba_data = datasets.CelebA(data_root, download=False, transforms=...)
ImageFolder
dataset class instead of the CelebA
class. e.g:# Download the dataset only
datasets.CelebA(data_root, download=True)
# Load the dataset using the ImageFolder class
celeba_data = datasets.ImageFolder(data_root, transforms=...)
The memory problem is still persistent in either of the cases.
I did not manage to find a solution to the memory problem. However, I came up with a workaround, custom dataset. Here is my implementation:
import os
import zipfile
import gdown
import torch
from natsort import natsorted
from PIL import Image
from torch.utils.data import Dataset
from torchvision import transforms
## Setup
# Number of gpus available
ngpu = 1
device = torch.device('cuda:0' if (
torch.cuda.is_available() and ngpu > 0) else 'cpu')
## Fetch data from Google Drive
# Root directory for the dataset
data_root = 'data/celeba'
# Path to folder with the dataset
dataset_folder = f'{data_root}/img_align_celeba'
# URL for the CelebA dataset
url = 'https://drive.google.com/uc?id=1cNIac61PSA_LqDFYFUeyaQYekYPc75NH'
# Path to download the dataset to
download_path = f'{data_root}/img_align_celeba.zip'
# Create required directories
if not os.path.exists(data_root):
os.makedirs(data_root)
os.makedirs(dataset_folder)
# Download the dataset from google drive
gdown.download(url, download_path, quiet=False)
# Unzip the downloaded file
with zipfile.ZipFile(download_path, 'r') as ziphandler:
ziphandler.extractall(dataset_folder)
## Create a custom Dataset class
class CelebADataset(Dataset):
def __init__(self, root_dir, transform=None):
"""
Args:
root_dir (string): Directory with all the images
transform (callable, optional): transform to be applied to each image sample
"""
# Read names of images in the root directory
image_names = os.listdir(root_dir)
self.root_dir = root_dir
self.transform = transform
self.image_names = natsorted(image_names)
def __len__(self):
return len(self.image_names)
def __getitem__(self, idx):
# Get the path to the image
img_path = os.path.join(self.root_dir, self.image_names[idx])
# Load image and convert it to RGB
img = Image.open(img_path).convert('RGB')
# Apply transformations to the image
if self.transform:
img = self.transform(img)
return img
## Load the dataset
# Path to directory with all the images
img_folder = f'{dataset_folder}/img_align_celeba'
# Spatial size of training images, images are resized to this size.
image_size = 64
# Transformations to be applied to each individual image sample
transform=transforms.Compose([
transforms.Resize(image_size),
transforms.CenterCrop(image_size),
transforms.ToTensor(),
transforms.Normalize(mean=[0.5, 0.5, 0.5],
std=[0.5, 0.5, 0.5])
])
# Load the dataset from file and apply transformations
celeba_dataset = CelebADataset(img_folder, transform)
## Create a dataloader
# Batch size during training
batch_size = 128
# Number of workers for the dataloader
num_workers = 0 if device.type == 'cuda' else 2
# Whether to put fetched data tensors to pinned memory
pin_memory = True if device.type == 'cuda' else False
celeba_dataloader = torch.utils.data.DataLoader(celeba_dataset,
batch_size=batch_size,
num_workers=num_workers,
pin_memory=pin_memory,
shuffle=True)
This implementation is memory efficient and works for my use case, even during training the memory used averages around(4GB). I would however, appreciate further intuition as to what might be causing the memory problems.
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With