I have some type instances. Let's call them A, B, and C. They all are instances of typeclass X. Now I would like to create a seperate function create
that creates an instance of A, B or C given some input (let's say a string). The type system cannot know what input is going to give what type. That's the thing Haskell doesn't like, and I think I know the answer, but I want to be sure. The current error I'm getting is:
• Couldn't match expected type ‘c’ with actual type ‘GCCCommand’
‘c’ is a rigid type variable bound by
the type signature for:
compiler :: forall c. CompilerCommand c => String -> c
at src/System/Command/Typed/CC.hs:29:1-44
• In the expression: gcc path
In an equation for ‘compiler’:
compiler path
| exe == "g++" || exe == "gcc" || exe == "cc" || exe == "cpp"
= gcc path
where
exe = takeFileName path
• Relevant bindings include
compiler :: String -> c
(bound at src/System/Command/Typed/CC.hs:31:1)
Does that mean, as I suspect, that it is not possible to overload on return type in this particular case because the compiler can't know upfront how the data will look in memory? How would you go to implement this function? I was thinking about creating something like the following:
data SuperX = SuperA A | SuperB B | SuperC C
create :: String -> SuperX
-- create can now be implemented
instance X SuperX where
-- a lot of boilerplate code ...
However, the boilerplate code suggests that it can be done better. Is this really the best way for doing it?
It depends what you need to do with it.
If your later processing doesn't care if it gets an A
, a B
, or C
, just that it gets something that implements X
...
restOfProgram :: X a => a -> ThingIWantToCompute
Then you could use continuation passing:
parseABC :: (X a => a -> r) -> String -> Maybe r
parseABC f "A" = Just (f A)
parseABC f ('B':xs) = Just (f (B xs))
parseABC f ('C':xs) = Just (f (C (read xs)))
parseABC _ _ = Nothing
Or an existential data wrapper:
data SomeX where
SomeX :: X t => t -> SomeX
parseABC :: String -> Maybe SomeX
parseABC "A" = Just (SomeX A)
parseABC ('B':xs) = Just (SomeX (B xs))
parseABC ('C':xs) = Just (SomeX (C (read xs)))
parseABC _ _ = Nothing
restOfProgram' :: SomeX -> ThingIWantToCompute
restOfProgram' (SomeX t) = restOfProgram t
If the later processing has different paths for A
, B
or C
, you probably want to return a sum type like SuperX
.
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With