We know that all primes above 3 can be generated using:
6 * k + 1
6 * k - 1
However we all numbers generated from the above formulas are not prime.
For Example:
6 * 6 - 1 = 35 which is clearly divisible by 5.
To Eliminate such conditions, I used a Sieve Method and removing the numbers which are factors of the numbers generated from the above formula.
Using the facts:
A number is said to be prime if it has no prime factors.
To generate primes below 1000.
ArrayList<Integer> primes = new ArrayList<>();
primes.add(2);//explicitly add
primes.add(3);//2 and 3
int n = 1000;
for (int i = 1; i <= (n / 6) ; i++) {
//get all the numbers which can be generated by the formula
int prod6k = 6 * i;
primes.add(prod6k - 1);
primes.add(prod6k + 1);
}
for (int i = 0; i < primes.size(); i++) {
int k = primes.get(i);
//remove all the factors of the numbers generated by the formula
for(int j = k * k; j <= n; j += k)//changed to k * k from 2 * k, Thanks to DTing
{
int index = primes.indexOf(j);
if(index != -1)
primes.remove(index);
}
}
System.out.println(primes);
However, this method does generate the prime numbers correctly. This runs in a much faster way as we need not check for all the numbers which we do check in a Sieve.
My question is that am I missing any edge case? This would be a lot better but I never saw someone using this. Am I doing something wrong?
Can this approach be much more optimized?
Taking a boolean[]
instead of an ArrayList
is much faster.
int n = 100000000;
boolean[] primes = new boolean[n + 1];
for (int i = 0; i <= n; i++)
primes[i] = false;
primes[2] = primes[3] = true;
for (int i = 1; i <= n / 6; i++) {
int prod6k = 6 * i;
primes[prod6k + 1] = true;
primes[prod6k - 1] = true;
}
for (int i = 0; i <= n; i++) {
if (primes[i]) {
int k = i;
for (int j = k * k; j <= n && j > 0; j += k) {
primes[j] = false;
}
}
}
for (int i = 0; i <= n; i++)
if (primes[i])
System.out.print(i + " ");
Methods to Find Prime Numbers Two consecutive numbers which are natural numbers and prime numbers are 2 and 3. Apart from 2 and 3, every prime number can be written in the form of 6n + 1 or 6n – 1, where n is a natural number. Note: These both are the general formula to find the prime numbers.
But these two are equivalent of course, since 6k+1 is 6(k+1) - 5. So all prime numbers have to be of the form 6k±1.
Proof: Primes are 6n +- 1 Let n be an appropriate integer. If p = 6n, then p would have a factor of 6 and therefore p could not be prime. If p = 6n + 2, then p would have a factor of 2 and therefore p could not be prime. If p = 6n + 3, then p would have a factor of 3 and therefore p could not be prime.
The prime number theorem provides a way to approximate the number of primes less than or equal to a given number n. This value is called π(n), where π is the “prime counting function.” For example, π(10) = 4 since there are four primes less than or equal to 10 (2, 3, 5 and 7).
5 is the first number generated by your criteria. Let's take a look at the numbers generated up to 25:
5,
6, 7,8,9,10, 11,12, 13,14,15,16, 17,18, 19,20,21,22, 23,24, 25
Now, let's look at these same numbers, when we use the Sieve of Eratosthenes algorithm:
5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25
After removing 2:
5,
6, 7,8, 9,10, 11,12, 13,14, 15,16, 17,18, 19,20, 21,22, 23,24, 25
After removing 3:
5,
6, 7,8,9,10, 11,12, 13,14,15,16, 17,18, 19,20,21,22, 23,24, 25
This is the same as the first set! Notice they both include 25, which is not prime. If we think about it, this is an obvious result. Consider any group of 6 consecutive numbers:
6k - 3, 6k - 2, 6k - 1, 6k, 6k + 1, 6k + 2
If we factor a little, we get:
3*(2k - 1), 2*(3k - 1), 6k - 1, 6*(k), 6k + 1, 2*(3k + 1)
In any group of 6 consecutive numbers, three of them will be divisible by two, and two of them will be divisible by three. These are exactly the numbers we have removed so far! Therefore:
6k - 1
and 6k + 1
is exactly the same as the first two rounds of the Sieve of Erathosthenes.It's a pretty nice speed improvement over the Sieve, too, because we don't have to add all those extra elements just to remove them. This explains why your algorithm works and why it doesn't miss any cases; because it's exactly the same as the Sieve.
Anyway, I agree that once you've generated primes, your boolean
way is by far the fastest. I have set up a benchmark using your ArrayList
way, your boolean[]
way, and my own way using LinkedList
and iterator.remove()
(because removals are fast in a LinkedList
. Here's the code for my test harness. Note that I run the test 12 times to ensure that the JVM is warmed up, and I print the size of the list and change the size of n
to attempt to prevent too much branch prediction optimization. You can also get faster in all three methods by using += 6
in the initial seed, instead of prod6k
:
import java.util.*;
public class PrimeGenerator {
public static List<Integer> generatePrimesArrayList(int n) {
List<Integer> primes = new ArrayList<>(getApproximateSize(n));
primes.add(2);// explicitly add
primes.add(3);// 2 and 3
for (int i = 6; i <= n; i+=6) {
// get all the numbers which can be generated by the formula
primes.add(i - 1);
primes.add(i + 1);
}
for (int i = 0; i < primes.size(); i++) {
int k = primes.get(i);
// remove all the factors of the numbers generated by the formula
for (int j = k * k; j <= n; j += k)// changed to k * k from 2 * k, Thanks
// to DTing
{
int index = primes.indexOf(j);
if (index != -1)
primes.remove(index);
}
}
return primes;
}
public static List<Integer> generatePrimesBoolean(int n) {
boolean[] primes = new boolean[n + 5];
for (int i = 0; i <= n; i++)
primes[i] = false;
primes[2] = primes[3] = true;
for (int i = 6; i <= n; i+=6) {
primes[i + 1] = true;
primes[i - 1] = true;
}
for (int i = 0; i <= n; i++) {
if (primes[i]) {
int k = i;
for (int j = k * k; j <= n && j > 0; j += k) {
primes[j] = false;
}
}
}
int approximateSize = getApproximateSize(n);
List<Integer> primesList = new ArrayList<>(approximateSize);
for (int i = 0; i <= n; i++)
if (primes[i])
primesList.add(i);
return primesList;
}
private static int getApproximateSize(int n) {
// Prime Number Theorem. Round up
int approximateSize = (int) Math.ceil(((double) n) / (Math.log(n)));
return approximateSize;
}
public static List<Integer> generatePrimesLinkedList(int n) {
List<Integer> primes = new LinkedList<>();
primes.add(2);// explicitly add
primes.add(3);// 2 and 3
for (int i = 6; i <= n; i+=6) {
// get all the numbers which can be generated by the formula
primes.add(i - 1);
primes.add(i + 1);
}
for (int i = 0; i < primes.size(); i++) {
int k = primes.get(i);
for (Iterator<Integer> iterator = primes.iterator(); iterator.hasNext();) {
int primeCandidate = iterator.next();
if (primeCandidate == k)
continue; // Always skip yourself
if (primeCandidate == (primeCandidate / k) * k)
iterator.remove();
}
}
return primes;
}
public static void main(String... args) {
int initial = 4000;
for (int i = 0; i < 12; i++) {
int n = initial * i;
long start = System.currentTimeMillis();
List<Integer> result = generatePrimesArrayList(n);
long seconds = System.currentTimeMillis() - start;
System.out.println(result.size() + "\tArrayList Seconds: " + seconds);
start = System.currentTimeMillis();
result = generatePrimesBoolean(n);
seconds = System.currentTimeMillis() - start;
System.out.println(result.size() + "\tBoolean Seconds: " + seconds);
start = System.currentTimeMillis();
result = generatePrimesLinkedList(n);
seconds = System.currentTimeMillis() - start;
System.out.println(result.size() + "\tLinkedList Seconds: " + seconds);
}
}
}
And the results of the last few trials:
3432 ArrayList Seconds: 430
3432 Boolean Seconds: 0
3432 LinkedList Seconds: 90
3825 ArrayList Seconds: 538
3824 Boolean Seconds: 0
3824 LinkedList Seconds: 81
4203 ArrayList Seconds: 681
4203 Boolean Seconds: 0
4203 LinkedList Seconds: 100
4579 ArrayList Seconds: 840
4579 Boolean Seconds: 0
4579 LinkedList Seconds: 111
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With