Logo Questions Linux Laravel Mysql Ubuntu Git Menu
 

How do I copy a row from one pandas dataframe to another pandas dataframe?

I have a dataframe of data that I am trying to append to another dataframe. I have tried various ways with .append() and there has been no successful way. When I print the data from iterrows. I provide 2 possible ways I tried to solve the issue below, one creates an error, the other doesn't populate the dataframe with anything.

The workflow I am trying to create is create a dataframe based off of a file that contains transaction history of customer orders. I only want to create a single record per order and I am going to add other logic to update the order details based on updates in the history. By the end of the script, it will have a single record for all of the orders and the end state of those orders after iterating through the history file.

class om():
"""Manages over the current state of orders"""

def __init__(self,dataF, desc='NONE'):
    self.df = pd.DataFrame
    self.data = dataF
    print type(dataF)
    self.oD= self.df(data=None,columns=desc)

def add_data(self,df):
    for i, row in self.data.iterrows():
        print 'row '+str(row)
        print type(row)
        df.append(self.data[i], ignore_index =True) """ This line creates and error"""
        df.append(row, ignore_index =True) """This line doesn't append anything to the dataframe."""

test = order_manager(body,header)
test.add_data(test.orderData)
like image 278
Chris Avatar asked Jun 22 '15 20:06

Chris


People also ask

How do I insert a row from one DataFrame to another?

append() function is used to append rows of other dataframe to the end of the given dataframe, returning a new dataframe object. Columns not in the original dataframes are added as new columns and the new cells are populated with NaN value.

How do I grab a row in pandas?

To get the nth row in a Pandas DataFrame, we can use the iloc() method. For example, df. iloc[4] will return the 5th row because row numbers start from 0.

How do I copy DataFrame from one panda to another?

Pandas DataFrame copy() Method The copy() method returns a copy of the DataFrame. By default, the copy is a "deep copy" meaning that any changes made in the original DataFrame will NOT be reflected in the copy.

Does pandas LOC create a copy?

All operations generate a copy.


1 Answers

Use .loc to enlarge the current df. See the example below.

import pandas as pd
import numpy as np

date_rng = pd.date_range('2015-01-01', periods=200, freq='D')

df1 = pd.DataFrame(np.random.randn(100, 3), columns='A B C'.split(), index=date_rng[:100])
Out[410]: 
                 A       B       C
2015-01-01  0.2799  0.4416 -0.7474
2015-01-02 -0.4983  0.1490 -0.2599
2015-01-03  0.4101  1.2622 -1.8081
2015-01-04  1.1976 -0.7410  0.4221
2015-01-05  1.3311  1.0399  2.2701
...            ...     ...     ...
2015-04-06 -0.0432  0.6131 -0.0216
2015-04-07  0.4224 -1.1565  2.2285
2015-04-08  0.0663  1.2994  2.0322
2015-04-09  0.1958 -0.4412  0.3924
2015-04-10  0.1622  1.7603  1.4525

[100 rows x 3 columns]


df2 = pd.DataFrame(np.random.randn(100, 3), columns='A B C'.split(), index=date_rng[100:])
Out[411]: 
                 A       B       C
2015-04-11  1.1196 -1.9627  0.6615
2015-04-12 -0.0098  1.7655  0.0447
2015-04-13 -1.7318 -2.0296  0.8384
2015-04-14 -1.5472 -1.7220 -0.3166
2015-04-15  2.5058  0.6487  1.0994
...            ...     ...     ...
2015-07-15 -1.4803  2.1703 -1.9391
2015-07-16 -1.7595 -1.7647 -1.0622
2015-07-17  1.7900  0.2280 -1.8797
2015-07-18  0.7909 -0.4999  0.3848
2015-07-19  1.2243  0.4681 -1.2323

[100 rows x 3 columns]

# to move one row from df2 to df1, use .loc to enlarge df1
# this is far more efficient than pd.concat and pd.append
df1.loc[df2.index[0]] = df2.iloc[0]

Out[413]: 
                 A       B       C
2015-01-01  0.2799  0.4416 -0.7474
2015-01-02 -0.4983  0.1490 -0.2599
2015-01-03  0.4101  1.2622 -1.8081
2015-01-04  1.1976 -0.7410  0.4221
2015-01-05  1.3311  1.0399  2.2701
...            ...     ...     ...
2015-04-07  0.4224 -1.1565  2.2285
2015-04-08  0.0663  1.2994  2.0322
2015-04-09  0.1958 -0.4412  0.3924
2015-04-10  0.1622  1.7603  1.4525
2015-04-11  1.1196 -1.9627  0.6615

[101 rows x 3 columns]
like image 128
Jianxun Li Avatar answered Sep 28 '22 17:09

Jianxun Li