I packed some float data in a texture as an unsigned_byte, my only option in webgl. Now I would like unpack it in the vertex shader. When I sample a pixel I get a vec4 which is really one of my floats. How do I convert from the vec4 to a float?
The following code is specifically for the iPhone 4 GPU using OpenGL ES 2.0. I have no experience with WebGL so I cant claim to know how the code will work in that context. Furthermore the main problem here is that highp float is not 32 bits but is instead 24 bit.
My solution is for fragment shaders - I didnt try it in the vertex shader but it shouldnt be any different. In order to use the you will need to get the RGBA texel from a sampler2d uniform and make sure that the values of each R,G,B and A channels are between 0.0 and 255.0 . This is easy to achieve as follows:
highp vec4 rgba = texture2D(textureSamplerUniform, texcoordVarying)*255.0;
You should be aware though that the endianess of your machine will dictate the correct order of your bytes. The above code assumes that floats are stored in big-endian order. If you see your results are wrong then just swap the order of the data by writing
rgba.rgba=rgba.abgr;
immediately after the line where you set it. Alternatively swap the indices on rgba. I think the above line is more intutive though and less prone to careless errors. I am not sure if it works for all given input. I tested for a large range of numbers and found that decode32 and encode32 are NOT exact inverses. Ive also left out the code I used to test it.
#pragma STDGL invariant(all)
highp vec4 encode32(highp float f) {
highp float e =5.0;
highp float F = abs(f);
highp float Sign = step(0.0,-f);
highp float Exponent = floor(log2(F));
highp float Mantissa = (exp2(- Exponent) * F);
Exponent = floor(log2(F) + 127.0) + floor(log2(Mantissa));
highp vec4 rgba;
rgba[0] = 128.0 * Sign + floor(Exponent*exp2(-1.0));
rgba[1] = 128.0 * mod(Exponent,2.0) + mod(floor(Mantissa*128.0),128.0);
rgba[2] = floor(mod(floor(Mantissa*exp2(23.0 -8.0)),exp2(8.0)));
rgba[3] = floor(exp2(23.0)*mod(Mantissa,exp2(-15.0)));
return rgba;
}
highp float decode32(highp vec4 rgba) {
highp float Sign = 1.0 - step(128.0,rgba[0])*2.0;
highp float Exponent = 2.0 * mod(rgba[0],128.0) + step(128.0,rgba[1]) - 127.0;
highp float Mantissa = mod(rgba[1],128.0)*65536.0 + rgba[2]*256.0 +rgba[3] + float(0x800000);
highp float Result = Sign * exp2(Exponent) * (Mantissa * exp2(-23.0 ));
return Result;
}
void main()
{
highp float result;
highp vec4 rgba=encode32(-10.01);
result = decode32(rgba);
}
Here are some links on IEEE precision I found useful. Link1. Link2. Link3.
Twerdster posted some excellent code in his answer. So all credit go to him. I post this new answer, since comments don't allow for nice syntax colored code blocks, and i wanted to share some code. But if you like the code, please upvote Twerdster original answer.
In Twerdster previous post he mentioned that the decode and encode might not work for all values.
To further test this, and validate the result i made a java program. While porting the code i tried to stayed as close as possible to the shader code (therefore i implemented some helper functions). Note: I also use a store/load function to similate what happens when you write/read from a texture.
I found out that:
float Mantissa = (exp2(- Exponent) * F);
to float Mantissa = F/exp2(Exponent);
to reduce precision errorsfloat Exponent = floor(log2(F));
to calc exponent. (simplified by new mantissa check)Using these small modifications i got equal output on almost all inputs, and got only small errors between the original and encoded/decoded value when things do go wrong, while in Twerdster's original implementation rounding errors often resulted in the wrong exponent (thus the result being off by factor two).
Please note that this is a Java test application which i wrote to test the algorithm. I hope this will also work when ported to the GPU. If anybody tries to run it on a GPU, please leave a comment with your experience.
And for the code with a simple test to try different numbers until it failes.
import java.io.PrintStream;
import java.util.Random;
public class BitPacking {
public static float decode32(float[] v)
{
float[] rgba = mult(255, v);
float sign = 1.0f - step(128.0f,rgba[0])*2.0f;
float exponent = 2.0f * mod(rgba[0],128.0f) + step(128.0f,rgba[1]) - 127.0f;
if(exponent==-127)
return 0;
float mantissa = mod(rgba[1],128.0f)*65536.0f + rgba[2]*256.0f +rgba[3] + ((float)0x800000);
return sign * exp2(exponent-23.0f) * mantissa ;
}
public static float[] encode32(float f) {
float F = abs(f);
if(F==0){
return new float[]{0,0,0,0};
}
float Sign = step(0.0f,-f);
float Exponent = floor(log2(F));
float Mantissa = F/exp2(Exponent);
if(Mantissa < 1)
Exponent -= 1;
Exponent += 127;
float[] rgba = new float[4];
rgba[0] = 128.0f * Sign + floor(Exponent*exp2(-1.0f));
rgba[1] = 128.0f * mod(Exponent,2.0f) + mod(floor(Mantissa*128.0f),128.0f);
rgba[2] = floor(mod(floor(Mantissa*exp2(23.0f -8.0f)),exp2(8.0f)));
rgba[3] = floor(exp2(23.0f)*mod(Mantissa,exp2(-15.0f)));
return mult(1/255.0f, rgba);
}
//shader build-in's
public static float exp2(float x){
return (float) Math.pow(2, x);
}
public static float[] step(float edge, float[] x){
float[] result = new float[x.length];
for(int i=0; i<x.length; i++)
result[i] = x[i] < edge ? 0.0f : 1.0f;
return result;
}
public static float step(float edge, float x){
return x < edge ? 0.0f : 1.0f;
}
public static float mod(float x, float y){
return x-y * floor(x/y);
}
public static float floor(float x){
return (float) Math.floor(x);
}
public static float pow(float x, float y){
return (float)Math.pow(x, y);
}
public static float log2(float x)
{
return (float) (Math.log(x)/Math.log(2));
}
public static float log10(float x)
{
return (float) (Math.log(x)/Math.log(10));
}
public static float abs(float x)
{
return (float)Math.abs(x);
}
public static float log(float x)
{
return (float)Math.log(x);
}
public static float exponent(float x)
{
return floor((float)(Math.log(x)/Math.log(10)));
}
public static float mantissa(float x)
{
return floor((float)(Math.log(x)/Math.log(10)));
}
//shorter matrix multiplication
private static float[] mult(float scalar, float[] w){
float[] result = new float[4];
for(int i=0; i<4; i++)
result[i] = scalar * w[i];
return result;
}
//simulate storage and retrieval in 4-channel/8-bit texture
private static float[] load(int[] v)
{
return new float[]{v[0]/255f, v[1]/255f, v[2]/255f, v[3]/255f};
}
private static int[] store(float[] v)
{
return new int[]{((int) (v[0]*255))& 0xff, ((int) (v[1]*255))& 0xff, ((int) (v[2]*255))& 0xff, ((int) (v[3]*255))& 0xff};
}
//testing until failure, and some specific hard-cases separately
public static void main(String[] args) {
//for(float v : new float[]{-2097151.0f}){ //small error here
for(float v : new float[]{3.4028233e+37f, 8191.9844f, 1.0f, 0.0f, 0.5f, 1.0f/3, 0.1234567890f, 2.1234567890f, -0.1234567890f, 1234.567f}){
float output = decode32(load(store(encode32(v))));
PrintStream stream = (v==output) ? System.out : System.err;
stream.println(v + " ?= " + output);
}
//System.exit(0);
Random r = new Random();
float max = 3200000f;
float min = -max;
boolean error = false;
int trials = 0;
while(!error){
float fin = min + r.nextFloat() * ((max - min) + 1);
float fout = decode32(load(store(encode32(fin))));
if(trials % 10000 == 0)
System.out.print('.');
if(trials % 1000000 == 0)
System.out.println();
if(fin != fout){
System.out.println();
System.out.println("correct trials = " + trials);
System.out.println(fin + " vs " + fout);
error = true;
}
trials++;
}
}
}
I tried Arjans solution, but it returned invalid values for 0, 1, 2, 4. There was a bug with the packing of the exponent, which i changed so the exp takes one 8bit float and the sign is packed with the mantissa:
//unpack a 32bit float from 4 8bit, [0;1] clamped floats
float unpackFloat4( vec4 _packed)
{
vec4 rgba = 255.0 * _packed;
float sign = step(-128.0, -rgba[1]) * 2.0 - 1.0;
float exponent = rgba[0] - 127.0;
if (abs(exponent + 127.0) < 0.001)
return 0.0;
float mantissa = mod(rgba[1], 128.0) * 65536.0 + rgba[2] * 256.0 + rgba[3] + (0x800000);
return sign * exp2(exponent-23.0) * mantissa ;
}
//pack a 32bit float into 4 8bit, [0;1] clamped floats
vec4 packFloat(float f)
{
float F = abs(f);
if(F == 0.0)
{
return vec4(0,0,0,0);
}
float Sign = step(0.0, -f);
float Exponent = floor( log2(F));
float Mantissa = F/ exp2(Exponent);
//std::cout << " sign: " << Sign << ", exponent: " << Exponent << ", mantissa: " << Mantissa << std::endl;
//denormalized values if all exponent bits are zero
if(Mantissa < 1.0)
Exponent -= 1;
Exponent += 127;
vec4 rgba;
rgba[0] = Exponent;
rgba[1] = 128.0 * Sign + mod(floor(Mantissa * float(128.0)),128.0);
rgba[2] = floor( mod(floor(Mantissa* exp2(float(23.0 - 8.0))), exp2(8.0)));
rgba[3] = floor( exp2(23.0)* mod(Mantissa, exp2(-15.0)));
return (1 / 255.0) * rgba;
}
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With