Logo Questions Linux Laravel Mysql Ubuntu Git Menu
 

How do I add a new column to a Spark DataFrame (using PySpark)?

People also ask

How do I add columns to spark?

You can add multiple columns to Spark DataFrame in several ways if you wanted to add a known set of columns you can easily do by chaining withColumn() or on select(). However, sometimes you may need to add multiple columns after applying some transformations n that case you can use either map() or foldLeft().

How do I add a column name to a DataFrame PySpark?

Method 1: Using withColumnRenamed() We will use of withColumnRenamed() method to change the column names of pyspark data frame. existingstr: Existing column name of data frame to rename. newstr: New column name. Returns type: Returns a data frame by renaming an existing column.

How do you add multiple columns in PySpark?

Let's create a new column with constant value using lit() SQL function, on the below code. The lit() function present in Pyspark is used to add a new column in a Pyspark Dataframe by assigning a constant or literal value.


You cannot add an arbitrary column to a DataFrame in Spark. New columns can be created only by using literals (other literal types are described in How to add a constant column in a Spark DataFrame?)

from pyspark.sql.functions import lit

df = sqlContext.createDataFrame(
    [(1, "a", 23.0), (3, "B", -23.0)], ("x1", "x2", "x3"))

df_with_x4 = df.withColumn("x4", lit(0))
df_with_x4.show()

## +---+---+-----+---+
## | x1| x2|   x3| x4|
## +---+---+-----+---+
## |  1|  a| 23.0|  0|
## |  3|  B|-23.0|  0|
## +---+---+-----+---+

transforming an existing column:

from pyspark.sql.functions import exp

df_with_x5 = df_with_x4.withColumn("x5", exp("x3"))
df_with_x5.show()

## +---+---+-----+---+--------------------+
## | x1| x2|   x3| x4|                  x5|
## +---+---+-----+---+--------------------+
## |  1|  a| 23.0|  0| 9.744803446248903E9|
## |  3|  B|-23.0|  0|1.026187963170189...|
## +---+---+-----+---+--------------------+

included using join:

from pyspark.sql.functions import exp

lookup = sqlContext.createDataFrame([(1, "foo"), (2, "bar")], ("k", "v"))
df_with_x6 = (df_with_x5
    .join(lookup, col("x1") == col("k"), "leftouter")
    .drop("k")
    .withColumnRenamed("v", "x6"))

## +---+---+-----+---+--------------------+----+
## | x1| x2|   x3| x4|                  x5|  x6|
## +---+---+-----+---+--------------------+----+
## |  1|  a| 23.0|  0| 9.744803446248903E9| foo|
## |  3|  B|-23.0|  0|1.026187963170189...|null|
## +---+---+-----+---+--------------------+----+

or generated with function / udf:

from pyspark.sql.functions import rand

df_with_x7 = df_with_x6.withColumn("x7", rand())
df_with_x7.show()

## +---+---+-----+---+--------------------+----+-------------------+
## | x1| x2|   x3| x4|                  x5|  x6|                 x7|
## +---+---+-----+---+--------------------+----+-------------------+
## |  1|  a| 23.0|  0| 9.744803446248903E9| foo|0.41930610446846617|
## |  3|  B|-23.0|  0|1.026187963170189...|null|0.37801881545497873|
## +---+---+-----+---+--------------------+----+-------------------+

Performance-wise, built-in functions (pyspark.sql.functions), which map to Catalyst expression, are usually preferred over Python user defined functions.

If you want to add content of an arbitrary RDD as a column you can

  • add row numbers to existing data frame
  • call zipWithIndex on RDD and convert it to data frame
  • join both using index as a join key

To add a column using a UDF:

df = sqlContext.createDataFrame(
    [(1, "a", 23.0), (3, "B", -23.0)], ("x1", "x2", "x3"))

from pyspark.sql.functions import udf
from pyspark.sql.types import *

def valueToCategory(value):
   if   value == 1: return 'cat1'
   elif value == 2: return 'cat2'
   ...
   else: return 'n/a'

# NOTE: it seems that calls to udf() must be after SparkContext() is called
udfValueToCategory = udf(valueToCategory, StringType())
df_with_cat = df.withColumn("category", udfValueToCategory("x1"))
df_with_cat.show()

## +---+---+-----+---------+
## | x1| x2|   x3| category|
## +---+---+-----+---------+
## |  1|  a| 23.0|     cat1|
## |  3|  B|-23.0|      n/a|
## +---+---+-----+---------+

For Spark 2.0

# assumes schema has 'age' column 
df.select('*', (df.age + 10).alias('agePlusTen'))

There are multiple ways we can add a new column in pySpark.

Let's first create a simple DataFrame.

date = [27, 28, 29, None, 30, 31]
df = spark.createDataFrame(date, IntegerType())

Now let's try to double the column value and store it in a new column. PFB few different approaches to achieve the same.

# Approach - 1 : using withColumn function
df.withColumn("double", df.value * 2).show()

# Approach - 2 : using select with alias function.
df.select("*", (df.value * 2).alias("double")).show()

# Approach - 3 : using selectExpr function with as clause.
df.selectExpr("*", "value * 2 as double").show()

# Approach - 4 : Using as clause in SQL statement.
df.createTempView("temp")
spark.sql("select *, value * 2 as double from temp").show()

For more examples and explanation on spark DataFrame functions, you can visit my blog.

I hope this helps.