Logo Questions Linux Laravel Mysql Ubuntu Git Menu
 

How do exceptions work (behind the scenes) in c++

People also ask

How are exceptions handled in C?

C doesn't support exception handling. To throw an exception in C, you need to use something platform specific such as Win32's structured exception handling -- but to give any help with that, we'll need to know the platform you care about. ...and don't use Win32 structured exception handling.

How does an exception work?

Exception is an event which is thrown at runtime in C++. All exceptions are derived from std::exception class. It is a runtime error which can be handled. It prints exception message and terminates the program, if we don't handle the exception.

What are exceptions in C?

An exception is a problem that arises during the execution of a program. A C++ exception is a response to an exceptional circumstance that arises while a program is running, such as an attempt to divide by zero. Exceptions provide a way to transfer control from one part of a program to another.

Can you catch exceptions in C?

C itself doesn't support exceptions but you can simulate them to a degree with setjmp and longjmp calls.


Instead of guessing, I decided to actually look at the generated code with a small piece of C++ code and a somewhat old Linux install.

class MyException
{
public:
    MyException() { }
    ~MyException() { }
};

void my_throwing_function(bool throwit)
{
    if (throwit)
        throw MyException();
}

void another_function();
void log(unsigned count);

void my_catching_function()
{
    log(0);
    try
    {
        log(1);
        another_function();
        log(2);
    }
    catch (const MyException& e)
    {
        log(3);
    }
    log(4);
}

I compiled it with g++ -m32 -W -Wall -O3 -save-temps -c, and looked at the generated assembly file.

    .file   "foo.cpp"
    .section    .text._ZN11MyExceptionD1Ev,"axG",@progbits,_ZN11MyExceptionD1Ev,comdat
    .align 2
    .p2align 4,,15
    .weak   _ZN11MyExceptionD1Ev
    .type   _ZN11MyExceptionD1Ev, @function
_ZN11MyExceptionD1Ev:
.LFB7:
    pushl   %ebp
.LCFI0:
    movl    %esp, %ebp
.LCFI1:
    popl    %ebp
    ret
.LFE7:
    .size   _ZN11MyExceptionD1Ev, .-_ZN11MyExceptionD1Ev

_ZN11MyExceptionD1Ev is MyException::~MyException(), so the compiler decided it needed a non-inline copy of the destructor.

.globl __gxx_personality_v0
.globl _Unwind_Resume
    .text
    .align 2
    .p2align 4,,15
.globl _Z20my_catching_functionv
    .type   _Z20my_catching_functionv, @function
_Z20my_catching_functionv:
.LFB9:
    pushl   %ebp
.LCFI2:
    movl    %esp, %ebp
.LCFI3:
    pushl   %ebx
.LCFI4:
    subl    $20, %esp
.LCFI5:
    movl    $0, (%esp)
.LEHB0:
    call    _Z3logj
.LEHE0:
    movl    $1, (%esp)
.LEHB1:
    call    _Z3logj
    call    _Z16another_functionv
    movl    $2, (%esp)
    call    _Z3logj
.LEHE1:
.L5:
    movl    $4, (%esp)
.LEHB2:
    call    _Z3logj
    addl    $20, %esp
    popl    %ebx
    popl    %ebp
    ret
.L12:
    subl    $1, %edx
    movl    %eax, %ebx
    je  .L16
.L14:
    movl    %ebx, (%esp)
    call    _Unwind_Resume
.LEHE2:
.L16:
.L6:
    movl    %eax, (%esp)
    call    __cxa_begin_catch
    movl    $3, (%esp)
.LEHB3:
    call    _Z3logj
.LEHE3:
    call    __cxa_end_catch
    .p2align 4,,3
    jmp .L5
.L11:
.L8:
    movl    %eax, %ebx
    .p2align 4,,6
    call    __cxa_end_catch
    .p2align 4,,6
    jmp .L14
.LFE9:
    .size   _Z20my_catching_functionv, .-_Z20my_catching_functionv
    .section    .gcc_except_table,"a",@progbits
    .align 4
.LLSDA9:
    .byte   0xff
    .byte   0x0
    .uleb128 .LLSDATT9-.LLSDATTD9
.LLSDATTD9:
    .byte   0x1
    .uleb128 .LLSDACSE9-.LLSDACSB9
.LLSDACSB9:
    .uleb128 .LEHB0-.LFB9
    .uleb128 .LEHE0-.LEHB0
    .uleb128 0x0
    .uleb128 0x0
    .uleb128 .LEHB1-.LFB9
    .uleb128 .LEHE1-.LEHB1
    .uleb128 .L12-.LFB9
    .uleb128 0x1
    .uleb128 .LEHB2-.LFB9
    .uleb128 .LEHE2-.LEHB2
    .uleb128 0x0
    .uleb128 0x0
    .uleb128 .LEHB3-.LFB9
    .uleb128 .LEHE3-.LEHB3
    .uleb128 .L11-.LFB9
    .uleb128 0x0
.LLSDACSE9:
    .byte   0x1
    .byte   0x0
    .align 4
    .long   _ZTI11MyException
.LLSDATT9:

Surprise! There are no extra instructions at all on the normal code path. The compiler instead generated extra out-of-line fixup code blocks, referenced via a table at the end of the function (which is actually put on a separate section of the executable). All the work is done behind the scenes by the standard library, based on these tables (_ZTI11MyException is typeinfo for MyException).

OK, that was not actually a surprise for me, I already knew how this compiler did it. Continuing with the assembly output:

    .text
    .align 2
    .p2align 4,,15
.globl _Z20my_throwing_functionb
    .type   _Z20my_throwing_functionb, @function
_Z20my_throwing_functionb:
.LFB8:
    pushl   %ebp
.LCFI6:
    movl    %esp, %ebp
.LCFI7:
    subl    $24, %esp
.LCFI8:
    cmpb    $0, 8(%ebp)
    jne .L21
    leave
    ret
.L21:
    movl    $1, (%esp)
    call    __cxa_allocate_exception
    movl    $_ZN11MyExceptionD1Ev, 8(%esp)
    movl    $_ZTI11MyException, 4(%esp)
    movl    %eax, (%esp)
    call    __cxa_throw
.LFE8:
    .size   _Z20my_throwing_functionb, .-_Z20my_throwing_functionb

Here we see the code for throwing an exception. While there was no extra overhead simply because an exception might be thrown, there is obviously a lot of overhead in actually throwing and catching an exception. Most of it is hidden within __cxa_throw, which must:

  • Walk the stack with the help of the exception tables until it finds a handler for that exception.
  • Unwind the stack until it gets to that handler.
  • Actually call the handler.

Compare that with the cost of simply returning a value, and you see why exceptions should be used only for exceptional returns.

To finish, the rest of the assembly file:

    .weak   _ZTI11MyException
    .section    .rodata._ZTI11MyException,"aG",@progbits,_ZTI11MyException,comdat
    .align 4
    .type   _ZTI11MyException, @object
    .size   _ZTI11MyException, 8
_ZTI11MyException:
    .long   _ZTVN10__cxxabiv117__class_type_infoE+8
    .long   _ZTS11MyException
    .weak   _ZTS11MyException
    .section    .rodata._ZTS11MyException,"aG",@progbits,_ZTS11MyException,comdat
    .type   _ZTS11MyException, @object
    .size   _ZTS11MyException, 14
_ZTS11MyException:
    .string "11MyException"

The typeinfo data.

    .section    .eh_frame,"a",@progbits
.Lframe1:
    .long   .LECIE1-.LSCIE1
.LSCIE1:
    .long   0x0
    .byte   0x1
    .string "zPL"
    .uleb128 0x1
    .sleb128 -4
    .byte   0x8
    .uleb128 0x6
    .byte   0x0
    .long   __gxx_personality_v0
    .byte   0x0
    .byte   0xc
    .uleb128 0x4
    .uleb128 0x4
    .byte   0x88
    .uleb128 0x1
    .align 4
.LECIE1:
.LSFDE3:
    .long   .LEFDE3-.LASFDE3
.LASFDE3:
    .long   .LASFDE3-.Lframe1
    .long   .LFB9
    .long   .LFE9-.LFB9
    .uleb128 0x4
    .long   .LLSDA9
    .byte   0x4
    .long   .LCFI2-.LFB9
    .byte   0xe
    .uleb128 0x8
    .byte   0x85
    .uleb128 0x2
    .byte   0x4
    .long   .LCFI3-.LCFI2
    .byte   0xd
    .uleb128 0x5
    .byte   0x4
    .long   .LCFI5-.LCFI3
    .byte   0x83
    .uleb128 0x3
    .align 4
.LEFDE3:
.LSFDE5:
    .long   .LEFDE5-.LASFDE5
.LASFDE5:
    .long   .LASFDE5-.Lframe1
    .long   .LFB8
    .long   .LFE8-.LFB8
    .uleb128 0x4
    .long   0x0
    .byte   0x4
    .long   .LCFI6-.LFB8
    .byte   0xe
    .uleb128 0x8
    .byte   0x85
    .uleb128 0x2
    .byte   0x4
    .long   .LCFI7-.LCFI6
    .byte   0xd
    .uleb128 0x5
    .align 4
.LEFDE5:
    .ident  "GCC: (GNU) 4.1.2 (Ubuntu 4.1.2-0ubuntu4)"
    .section    .note.GNU-stack,"",@progbits

Even more exception handling tables, and assorted extra information.

So, the conclusion, at least for GCC on Linux: the cost is extra space (for the handlers and tables) whether or not exceptions are thrown, plus the extra cost of parsing the tables and executing the handlers when an exception is thrown. If you use exceptions instead of error codes, and an error is rare, it can be faster, since you do not have the overhead of testing for errors anymore.

In case you want more information, in particular what all the __cxa_ functions do, see the original specification they came from:

  • Itanium C++ ABI

Exceptions being slow was true in the old days.
In most modern compiler this no longer holds true.

Note: Just because we have exceptions does not mean we do not use error codes as well. When error can be handled locally use error codes. When errors require more context for correction use exceptions: I wrote it much more eloquently here: What are the principles guiding your exception handling policy?

The cost of exception handling code when no exceptions are being used is practically zero.

When an exception is thrown there is some work done.
But you have to compare this against the cost of returning error codes and checking them all the way back to to point where the error can be handled. Both more time consuming to write and maintain.

Also there is one gotcha for novices:
Though Exception objects are supposed to be small some people put lots of stuff inside them. Then you have the cost of copying the exception object. The solution there is two fold:

  • Don't put extra stuff in your exception.
  • Catch by const reference.

In my opinion I would bet that the same code with exceptions is either more efficient or at least as comparable as the code without the exceptions (but has all the extra code to check function error results). Remember you are not getting anything for free the compiler is generating the code you should have written in the first place to check error codes (and usually the compiler is much more efficient than a human).


There are a number of ways you could implement exceptions, but typically they will rely on some underlying support from the OS. On Windows this is the structured exception handling mechanism.

There is decent discussion of the details on Code Project: How a C++ compiler implements exception handling

The overhead of exceptions occurs because the compiler has to generate code to keep track of which objects must be destructed in each stack frame (or more precisely scope) if an exception propagates out of that scope. If a function has no local variables on the stack that require destructors to be called then it should not have a performance penalty wrt exception handling.

Using a return code can only unwind a single level of the stack at a time, whereas an exception handling mechanism can jump much further back down the stack in one operation if there is nothing for it to do in the intermediate stack frames.


Matt Pietrek wrote an excellent article on Win32 Structured Exception Handling. While this article was originally written in 1997, it still applies today (but of course only applies to Windows).


This article examines the issue and basically finds that in practice there is a run-time cost to exceptions, although the cost is fairly low if the exception isn't thrown. Good article, recommended.


A friend of me wrote a bit how Visual C++ handles exceptions some years ago.

http://www.xyzw.de/c160.html