Logo Questions Linux Laravel Mysql Ubuntu Git Menu
 

How can I use interface as a C# generic type constraint?

People also ask

Is there interface in C?

You implement interfaces using structs of function pointers. You can then have the interface struct embedded in your data object struct and pass the interface pointer as first parameter of every interface member function.

Can interface be used as a type?

You can use interface names anywhere you can use any other data type name. If you define a reference variable whose type is an interface, any object you assign to it must be an instance of a class that implements the interface.

How we can use interface in C#?

Interface methods do not have a body - the body is provided by the "implement" class. On implementation of an interface, you must override all of its methods. Interfaces can contain properties and methods, but not fields/variables. Interface members are by default abstract and public.

What is interface function in C?

An interface is simply a collection of functions that describe the behavior of the Object in some aspect. The interface itself does not implement any functionality, it just defines what methods the Object must have, and behave according to it. In some design methods this is called a contract for the Object.


The closest you can do (except for your base-interface approach) is "where T : class", meaning reference-type. There is no syntax to mean "any interface".

This ("where T : class") is used, for example, in WCF to limit clients to service contracts (interfaces).


I know this is a bit late but for those that are interested you can use a runtime check.

typeof(T).IsInterface

No, actually, if you are thinking class and struct mean classes and structs, you're wrong. class means any reference type (e.g. includes interfaces too) and struct means any value type (e.g. struct, enum).


To follow up on Robert's answer, this is even later, but you can use a static helper class to make the runtime check once only per type:

public bool Foo<T>() where T : class
{
    FooHelper<T>.Foo();
}

private static class FooHelper<TInterface> where TInterface : class
{
    static FooHelper()
    {
        if (!typeof(TInterface).IsInterface)
            throw // ... some exception
    }
    public static void Foo() { /*...*/ }
}

I also note that your "should work" solution does not, in fact, work. Consider:

public bool Foo<T>() where T : IBase;
public interface IBase { }
public interface IActual : IBase { string S { get; } }
public class Actual : IActual { public string S { get; set; } }

Now there's nothing stopping you from calling Foo thus:

Foo<Actual>();

The Actual class, after all, satisfies the IBase constraint.


For some time now I've been thinking about near-compile-time constraints, so this is a perfect opportunity to launch the concept.

The basic idea is that if you cannot do a check compile time, you should do it at the earliest possible point in time, which is basically the moment the application starts. If all checks are okay, the application will run; if a check fails, the application will fail instantly.

Behavior

The best possible outcome is that our program doesn't compile if the constraints are not met. Unfortunately that's not possible in the current C# implementation.

Next best thing is that the program crashes the moment it's started.

The last option is that the program will crash the moment the code is hit. This is the default behavior of .NET. For me, this is completely unacceptable.

Prerequirements

We need to have a constraint mechanism, so for the lack of anything better... let's use an attribute. The attribute will be present on top of a generic constraint to check if it matches our conditions. If it doesn't, we give an ugly error.

This enables us to do things like this in our code:

public class Clas<[IsInterface] T> where T : class

(I've kept the where T:class here, because I always prefer compile-time checks to run-time checks)

So, that only leaves us with 1 problem, which is checking if all the types that we use match the constraint. How hard can it be?

Let's break it up

Generic types are always either on a class (/struct/interface) or on a method.

Triggering a constraint requires you to do one of the following things:

  1. Compile-time, when using a type in a type (inheritance, generic constraint, class member)
  2. Compile-time, when using a type in a method body
  3. Run-time, when using reflection to construct something based on the generic base class.
  4. Run-time, when using reflection to construct something based on RTTI.

At this point, I would like to state that you should always avoid doing (4) in any program IMO. Regardless, these checks won't support it, since it would effectively mean solving the halting problem.

Case 1: using a type

Example:

public class TestClass : SomeClass<IMyInterface> { ... } 

Example 2:

public class TestClass 
{ 
    SomeClass<IMyInterface> myMember; // or a property, method, etc.
} 

Basically this involves scanning all types, inheritance, members, parameters, etc, etc, etc. If a type is a generic type and has a constraint, we check the constraint; if it's an array, we check the element type.

At this point I must add that this will break the fact that by default .NET loads types 'lazy'. By scanning all the types, we force the .NET runtime to load them all. For most programs this shouldn't be a problem; still, if you use static initializers in your code, you might encounter problems with this approach... That said, I wouldn't advice anyone to do this anyways (except for things like this :-), so it shouldn't give you a lot of problems.

Case 2: using a type in a method

Example:

void Test() {
    new SomeClass<ISomeInterface>();
}

To check this we have only 1 option: decompile the class, check all member tokens that are used and if one of them is the generic type - check the arguments.

Case 3: Reflection, runtime generic construction

Example:

typeof(CtorTest<>).MakeGenericType(typeof(IMyInterface))

I suppose it's theoretically possible to check this with similar tricks as case (2), but the implementation of it is much harder (you need to check if MakeGenericType is called in some code path). I won't go into details here...

Case 4: Reflection, runtime RTTI

Example:

Type t = Type.GetType("CtorTest`1[IMyInterface]");

This is the worst case scenario and as I explained before generally a bad idea IMHO. Either way, there's no practical way to figure this out using checks.

Testing the lot

Creating a program that tests case (1) and (2) will result in something like this:

[AttributeUsage(AttributeTargets.GenericParameter)]
public class IsInterface : ConstraintAttribute
{
    public override bool Check(Type genericType)
    {
        return genericType.IsInterface;
    }

    public override string ToString()
    {
        return "Generic type is not an interface";
    }
}

public abstract class ConstraintAttribute : Attribute
{
    public ConstraintAttribute() {}

    public abstract bool Check(Type generic);
}

internal class BigEndianByteReader
{
    public BigEndianByteReader(byte[] data)
    {
        this.data = data;
        this.position = 0;
    }

    private byte[] data;
    private int position;

    public int Position
    {
        get { return position; }
    }

    public bool Eof
    {
        get { return position >= data.Length; }
    }

    public sbyte ReadSByte()
    {
        return (sbyte)data[position++];
    }

    public byte ReadByte()
    {
        return (byte)data[position++];
    }

    public int ReadInt16()
    {
        return ((data[position++] | (data[position++] << 8)));
    }

    public ushort ReadUInt16()
    {
        return (ushort)((data[position++] | (data[position++] << 8)));
    }

    public int ReadInt32()
    {
        return (((data[position++] | (data[position++] << 8)) | (data[position++] << 0x10)) | (data[position++] << 0x18));
    }

    public ulong ReadInt64()
    {
        return (ulong)(((data[position++] | (data[position++] << 8)) | (data[position++] << 0x10)) | (data[position++] << 0x18) | 
                        (data[position++] << 0x20) | (data[position++] << 0x28) | (data[position++] << 0x30) | (data[position++] << 0x38));
    }

    public double ReadDouble()
    {
        var result = BitConverter.ToDouble(data, position);
        position += 8;
        return result;
    }

    public float ReadSingle()
    {
        var result = BitConverter.ToSingle(data, position);
        position += 4;
        return result;
    }
}

internal class ILDecompiler
{
    static ILDecompiler()
    {
        // Initialize our cheat tables
        singleByteOpcodes = new OpCode[0x100];
        multiByteOpcodes = new OpCode[0x100];

        FieldInfo[] infoArray1 = typeof(OpCodes).GetFields();
        for (int num1 = 0; num1 < infoArray1.Length; num1++)
        {
            FieldInfo info1 = infoArray1[num1];
            if (info1.FieldType == typeof(OpCode))
            {
                OpCode code1 = (OpCode)info1.GetValue(null);
                ushort num2 = (ushort)code1.Value;
                if (num2 < 0x100)
                {
                    singleByteOpcodes[(int)num2] = code1;
                }
                else
                {
                    if ((num2 & 0xff00) != 0xfe00)
                    {
                        throw new Exception("Invalid opcode: " + num2.ToString());
                    }
                    multiByteOpcodes[num2 & 0xff] = code1;
                }
            }
        }
    }

    private ILDecompiler() { }

    private static OpCode[] singleByteOpcodes;
    private static OpCode[] multiByteOpcodes;

    public static IEnumerable<ILInstruction> Decompile(MethodBase mi, byte[] ildata)
    {
        Module module = mi.Module;

        BigEndianByteReader reader = new BigEndianByteReader(ildata);
        while (!reader.Eof)
        {
            OpCode code = OpCodes.Nop;

            int offset = reader.Position;
            ushort b = reader.ReadByte();
            if (b != 0xfe)
            {
                code = singleByteOpcodes[b];
            }
            else
            {
                b = reader.ReadByte();
                code = multiByteOpcodes[b];
                b |= (ushort)(0xfe00);
            }

            object operand = null;
            switch (code.OperandType)
            {
                case OperandType.InlineBrTarget:
                    operand = reader.ReadInt32() + reader.Position;
                    break;
                case OperandType.InlineField:
                    if (mi is ConstructorInfo)
                    {
                        operand = module.ResolveField(reader.ReadInt32(), mi.DeclaringType.GetGenericArguments(), Type.EmptyTypes);
                    }
                    else
                    {
                        operand = module.ResolveField(reader.ReadInt32(), mi.DeclaringType.GetGenericArguments(), mi.GetGenericArguments());
                    }
                    break;
                case OperandType.InlineI:
                    operand = reader.ReadInt32();
                    break;
                case OperandType.InlineI8:
                    operand = reader.ReadInt64();
                    break;
                case OperandType.InlineMethod:
                    try
                    {
                        if (mi is ConstructorInfo)
                        {
                            operand = module.ResolveMember(reader.ReadInt32(), mi.DeclaringType.GetGenericArguments(), Type.EmptyTypes);
                        }
                        else
                        {
                            operand = module.ResolveMember(reader.ReadInt32(), mi.DeclaringType.GetGenericArguments(), mi.GetGenericArguments());
                        }
                    }
                    catch
                    {
                        operand = null;
                    }
                    break;
                case OperandType.InlineNone:
                    break;
                case OperandType.InlineR:
                    operand = reader.ReadDouble();
                    break;
                case OperandType.InlineSig:
                    operand = module.ResolveSignature(reader.ReadInt32());
                    break;
                case OperandType.InlineString:
                    operand = module.ResolveString(reader.ReadInt32());
                    break;
                case OperandType.InlineSwitch:
                    int count = reader.ReadInt32();
                    int[] targetOffsets = new int[count];
                    for (int i = 0; i < count; ++i)
                    {
                        targetOffsets[i] = reader.ReadInt32();
                    }
                    int pos = reader.Position;
                    for (int i = 0; i < count; ++i)
                    {
                        targetOffsets[i] += pos;
                    }
                    operand = targetOffsets;
                    break;
                case OperandType.InlineTok:
                case OperandType.InlineType:
                    try
                    {
                        if (mi is ConstructorInfo)
                        {
                            operand = module.ResolveMember(reader.ReadInt32(), mi.DeclaringType.GetGenericArguments(), Type.EmptyTypes);
                        }
                        else
                        {
                            operand = module.ResolveMember(reader.ReadInt32(), mi.DeclaringType.GetGenericArguments(), mi.GetGenericArguments());
                        }
                    }
                    catch
                    {
                        operand = null;
                    }
                    break;
                case OperandType.InlineVar:
                    operand = reader.ReadUInt16();
                    break;
                case OperandType.ShortInlineBrTarget:
                    operand = reader.ReadSByte() + reader.Position;
                    break;
                case OperandType.ShortInlineI:
                    operand = reader.ReadSByte();
                    break;
                case OperandType.ShortInlineR:
                    operand = reader.ReadSingle();
                    break;
                case OperandType.ShortInlineVar:
                    operand = reader.ReadByte();
                    break;

                default:
                    throw new Exception("Unknown instruction operand; cannot continue. Operand type: " + code.OperandType);
            }

            yield return new ILInstruction(offset, code, operand);
        }
    }
}

public class ILInstruction
{
    public ILInstruction(int offset, OpCode code, object operand)
    {
        this.Offset = offset;
        this.Code = code;
        this.Operand = operand;
    }

    public int Offset { get; private set; }
    public OpCode Code { get; private set; }
    public object Operand { get; private set; }
}

public class IncorrectConstraintException : Exception
{
    public IncorrectConstraintException(string msg, params object[] arg) : base(string.Format(msg, arg)) { }
}

public class ConstraintFailedException : Exception
{
    public ConstraintFailedException(string msg) : base(msg) { }
    public ConstraintFailedException(string msg, params object[] arg) : base(string.Format(msg, arg)) { }
}

public class NCTChecks
{
    public NCTChecks(Type startpoint)
        : this(startpoint.Assembly)
    { }

    public NCTChecks(params Assembly[] ass)
    {
        foreach (var assembly in ass)
        {
            assemblies.Add(assembly);

            foreach (var type in assembly.GetTypes())
            {
                EnsureType(type);
            }
        }

        while (typesToCheck.Count > 0)
        {
            var t = typesToCheck.Pop();
            GatherTypesFrom(t);

            PerformRuntimeCheck(t);
        }
    }

    private HashSet<Assembly> assemblies = new HashSet<Assembly>();

    private Stack<Type> typesToCheck = new Stack<Type>();
    private HashSet<Type> typesKnown = new HashSet<Type>();

    private void EnsureType(Type t)
    {
        // Don't check for assembly here; we can pass f.ex. System.Lazy<Our.T<MyClass>>
        if (t != null && !t.IsGenericTypeDefinition && typesKnown.Add(t))
        {
            typesToCheck.Push(t);

            if (t.IsGenericType)
            {
                foreach (var par in t.GetGenericArguments())
                {
                    EnsureType(par);
                }
            }

            if (t.IsArray)
            {
                EnsureType(t.GetElementType());
            }
        }

    }

    private void PerformRuntimeCheck(Type t)
    {
        if (t.IsGenericType && !t.IsGenericTypeDefinition)
        {
            // Only check the assemblies we explicitly asked for:
            if (this.assemblies.Contains(t.Assembly))
            {
                // Gather the generics data:
                var def = t.GetGenericTypeDefinition();
                var par = def.GetGenericArguments();
                var args = t.GetGenericArguments();

                // Perform checks:
                for (int i = 0; i < args.Length; ++i)
                {
                    foreach (var check in par[i].GetCustomAttributes(typeof(ConstraintAttribute), true).Cast<ConstraintAttribute>())
                    {
                        if (!check.Check(args[i]))
                        {
                            string error = "Runtime type check failed for type " + t.ToString() + ": " + check.ToString();

                            Debugger.Break();
                            throw new ConstraintFailedException(error);
                        }
                    }
                }
            }
        }
    }

    // Phase 1: all types that are referenced in some way
    private void GatherTypesFrom(Type t)
    {
        EnsureType(t.BaseType);

        foreach (var intf in t.GetInterfaces())
        {
            EnsureType(intf);
        }

        foreach (var nested in t.GetNestedTypes())
        {
            EnsureType(nested);
        }

        var all = BindingFlags.Public | BindingFlags.NonPublic | BindingFlags.Static | BindingFlags.Instance;
        foreach (var field in t.GetFields(all))
        {
            EnsureType(field.FieldType);
        }
        foreach (var property in t.GetProperties(all))
        {
            EnsureType(property.PropertyType);
        }
        foreach (var evt in t.GetEvents(all))
        {
            EnsureType(evt.EventHandlerType);
        }
        foreach (var ctor in t.GetConstructors(all))
        {
            foreach (var par in ctor.GetParameters())
            {
                EnsureType(par.ParameterType);
            }

            // Phase 2: all types that are used in a body
            GatherTypesFrom(ctor);
        }
        foreach (var method in t.GetMethods(all))
        {
            if (method.ReturnType != typeof(void))
            {
                EnsureType(method.ReturnType);
            }

            foreach (var par in method.GetParameters())
            {
                EnsureType(par.ParameterType);
            }

            // Phase 2: all types that are used in a body
            GatherTypesFrom(method);
        }
    }

    private void GatherTypesFrom(MethodBase method)
    {
        if (this.assemblies.Contains(method.DeclaringType.Assembly)) // only consider methods we've build ourselves
        {
            MethodBody methodBody = method.GetMethodBody();
            if (methodBody != null)
            {
                // Handle local variables
                foreach (var local in methodBody.LocalVariables)
                {
                    EnsureType(local.LocalType);
                }

                // Handle method body
                var il = methodBody.GetILAsByteArray();
                if (il != null)
                {
                    foreach (var oper in ILDecompiler.Decompile(method, il))
                    {
                        if (oper.Operand is MemberInfo)
                        {
                            foreach (var type in HandleMember((MemberInfo)oper.Operand))
                            {
                                EnsureType(type);
                            }

                        }
                    }
                }
            }
        }
    }

    private static IEnumerable<Type> HandleMember(MemberInfo info)
    {
        // Event, Field, Method, Constructor or Property.
        yield return info.DeclaringType;
        if (info is EventInfo)
        {
            yield return ((EventInfo)info).EventHandlerType;
        }
        else if (info is FieldInfo)
        {
            yield return ((FieldInfo)info).FieldType;
        }
        else if (info is PropertyInfo)
        {
            yield return ((PropertyInfo)info).PropertyType;
        }
        else if (info is ConstructorInfo)
        {
            foreach (var par in ((ConstructorInfo)info).GetParameters())
            {
                yield return par.ParameterType;
            }
        }
        else if (info is MethodInfo)
        {
            foreach (var par in ((MethodInfo)info).GetParameters())
            {
                yield return par.ParameterType;
            }
        }
        else if (info is Type)
        {
            yield return (Type)info;
        }
        else
        {
            throw new NotSupportedException("Incorrect unsupported member type: " + info.GetType().Name);
        }
    }
}

Using the code

Well, that's the easy part :-)

// Create something illegal
public class Bar2 : IMyInterface
{
    public void Execute()
    {
        throw new NotImplementedException();
    }
}

// Our fancy check
public class Foo<[IsInterface] T>
{
}

class Program
{
    static Program()
    {
        // Perform all runtime checks
        new NCTChecks(typeof(Program));
    }

    static void Main(string[] args)
    {
        // Normal operation
        Console.WriteLine("Foo");
        Console.ReadLine();
    }
}