I have a program that involves examining a complex data structure to see if it has any defects. (It's quite complicated, so I'm posting example code.) All of the checks are unrelated to each other, and will all have their own modules and tests.
More importantly, each check has its own error type that contains different information about how the check failed for each number. I'm doing it this way instead of just returning an error string so I can test the errors (it's why Error
relies on PartialEq
).
I have traits for Check
and Error
:
trait Check {
type Error;
fn check_number(&self, number: i32) -> Option<Self::Error>;
}
trait Error: std::fmt::Debug + PartialEq {
fn description(&self) -> String;
}
And two example checks, with their error structs. In this example, I want to show errors if a number is negative or even:
#[derive(PartialEq, Debug)]
struct EvenError {
number: i32,
}
struct EvenCheck;
impl Check for EvenCheck {
type Error = EvenError;
fn check_number(&self, number: i32) -> Option<EvenError> {
if number < 0 {
Some(EvenError { number: number })
} else {
None
}
}
}
impl Error for EvenError {
fn description(&self) -> String {
format!("{} is even", self.number)
}
}
#[derive(PartialEq, Debug)]
struct NegativeError {
number: i32,
}
struct NegativeCheck;
impl Check for NegativeCheck {
type Error = NegativeError;
fn check_number(&self, number: i32) -> Option<NegativeError> {
if number < 0 {
Some(NegativeError { number: number })
} else {
None
}
}
}
impl Error for NegativeError {
fn description(&self) -> String {
format!("{} is negative", self.number)
}
}
I know that in this example, the two structs look identical, but in my code, there are many different structs, so I can't merge them. Lastly, an example main
function, to illustrate the kind of thing I want to do:
fn main() {
let numbers = vec![1, -4, 64, -25];
let checks = vec![
Box::new(EvenCheck) as Box<Check<Error = Error>>,
Box::new(NegativeCheck) as Box<Check<Error = Error>>,
]; // What should I put for this Vec's type?
for number in numbers {
for check in checks {
if let Some(error) = check.check_number(number) {
println!("{:?} - {}", error, error.description())
}
}
}
}
You can see the code in the Rust playground.
The closest thing I've come to a solution is to remove the associated types and have the checks return Option<Box<Error>>
. However, I get this error instead:
error[E0038]: the trait `Error` cannot be made into an object
--> src/main.rs:4:55
|
4 | fn check_number(&self, number: i32) -> Option<Box<Error>>;
| ^^^^^ the trait `Error` cannot be made into an object
|
= note: the trait cannot use `Self` as a type parameter in the supertraits or where-clauses
because of the PartialEq
in the Error
trait. Rust has been great to me thus far, and I really hope I'm able to bend the type system into supporting something like this!
When you write an impl Check
and specialize your type Error
with a concrete type, you are ending up with different types.
In other words, Check<Error = NegativeError>
and Check<Error = EvenError>
are statically different types. Although you might expect Check<Error>
to describe both, note that in Rust NegativeError
and EvenError
are not sub-types of Error
. They are guaranteed to implement all methods defined by the Error
trait, but then calls to those methods will be statically dispatched to physically different functions that the compiler creates (each will have a version for NegativeError
, one for EvenError
).
Therefore, you can't put them in the same Vec
, even boxed (as you discovered). It's not so much a matter of knowing how much space to allocate, it's that Vec
requires its types to be homogeneous (you can't have a vec![1u8, 'a']
either, although a char
is representable as a u8
in memory).
Rust's way to "erase" some of the type information and gain the dynamic dispatch part of subtyping is, as you discovered, trait objects.
If you want to give another try to the trait object approach, you might find it more appealing with a few tweaks...
You might find it much easier if you used the Error
trait in std::error
instead of your own version of it.
You may need to impl Display
to create a description with a dynamically built String
, like so:
impl fmt::Display for EvenError {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
write!(f, "{} is even", self.number)
}
}
impl Error for EvenError {
fn description(&self) -> &str { "even error" }
}
Now you can drop the associated type and have Check
return a trait object:
trait Check {
fn check_number(&self, number: i32) -> Option<Box<Error>>;
}
your Vec
now has an expressible type:
let mut checks: Vec<Box<Check>> = vec![
Box::new(EvenCheck) ,
Box::new(NegativeCheck) ,
];
The best part of using std::error::Error
...
is that now you don't need to use PartialEq
to understand what error was thrown. Error
has various types of downcasts and type checks if you do need to retrieve the concrete Error
type out of your trait object.
for number in numbers {
for check in &mut checks {
if let Some(error) = check.check_number(number) {
println!("{}", error);
if let Some(s_err)= error.downcast_ref::<EvenError>() {
println!("custom logic for EvenErr: {} - {}", s_err.number, s_err)
}
}
}
}
full example on the playground
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With