I have a function that takes a multidimensional std::vector
and requires the depth (or the number of dimensions) to be passed in as a template parameter. Instead of hardcoding this value I would like to write a constexpr
function that will take the std::vector
and return the depth as an unsigned integer
value.
For example:
std::vector<std::vector<std::vector<int>>> v = { { { 0, 1}, { 2, 3 } }, { { 4, 5}, { 6, 7 } }, }; // Returns 3 size_t depth = GetDepth(v);
This needs to be done at compile time though because this depth will be passed to the template function as a template parameter:
// Same as calling foo<3>(v); foo<GetDepth(v)>(v);
Is there any way to do this?
A classic templating problem. Here's a simple solution like how the C++ standard library does. The basic idea is to have a recursive template that will count one by one each dimension, with a base case of 0 for any type that is not a vector.
#include <vector> #include <type_traits> template<typename T> struct dimensions : std::integral_constant<std::size_t, 0> {}; template<typename T> struct dimensions<std::vector<T>> : std::integral_constant<std::size_t, 1 + dimensions<T>::value> {}; template<typename T> inline constexpr std::size_t dimensions_v = dimensions<T>::value; // (C++17)
So then you could use it like so:
dimensions<vector<vector<vector<int>>>>::value; // 3 // OR dimensions_v<vector<vector<vector<int>>>>; // also 3 (C++17)
Edit:
Ok, I've finished the general implementation for any container type. Note that I defined a container type as anything that has a well-formed iterator type as per the expression begin(t)
where std::begin
is imported for ADL lookup and t
is an lvalue of type T
.
Here's my code along with comments to explain why stuff works and the test cases I used. Note, this requires C++17 to compile.
#include <iostream> #include <vector> #include <array> #include <type_traits> using std::begin; // import std::begin for handling C-style array with the same ADL idiom as the other types // decide whether T is a container type - i define this as anything that has a well formed begin iterator type. // we return true/false to determing if T is a container type. // we use the type conversion ability of nullptr to std::nullptr_t or void* (prefers std::nullptr_t overload if it exists). // use SFINAE to conditionally enable the std::nullptr_t overload. // these types might not have a default constructor, so return a pointer to it. // base case returns void* which we decay to void to represent not a container. template<typename T> void *_iter_elem(void*) { return nullptr; } template<typename T> typename std::iterator_traits<decltype(begin(*(T*)nullptr))>::value_type *_iter_elem(std::nullptr_t) { return nullptr; } // this is just a convenience wrapper to make the above user friendly template<typename T> struct container_stuff { typedef std::remove_pointer_t<decltype(_iter_elem<T>(nullptr))> elem_t; // the element type if T is a container, otherwise void static inline constexpr bool is_container = !std::is_same_v<elem_t, void>; // true iff T is a container }; // and our old dimension counting logic (now uses std:nullptr_t SFINAE logic) template<typename T> constexpr std::size_t _dimensions(void*) { return 0; } template<typename T, std::enable_if_t<container_stuff<T>::is_container, int> = 0> constexpr std::size_t _dimensions(std::nullptr_t) { return 1 + _dimensions<typename container_stuff<T>::elem_t>(nullptr); } // and our nice little alias template<typename T> inline constexpr std::size_t dimensions_v = _dimensions<T>(nullptr); int main() { std::cout << container_stuff<int>::is_container << '\n'; // false std::cout << container_stuff<int[6]>::is_container<< '\n'; // true std::cout << container_stuff<std::vector<int>>::is_container << '\n'; // true std::cout << container_stuff<std::array<int, 3>>::is_container << '\n'; // true std::cout << dimensions_v<std::vector<std::array<std::vector<int>, 2>>>; // 3 }
Assuming that a container is any type that has value_type
and iterator
member types (standard library containers satisfy this requirement) or a C-style array, we can easily generalize Cruz Jean's solution:
template<class T, typename = void> struct rank : std::integral_constant<std::size_t, 0> {}; // C-style arrays template<class T> struct rank<T[], void> : std::integral_constant<std::size_t, 1 + rank<T>::value> {}; template<class T, std::size_t n> struct rank<T[n], void> : std::integral_constant<std::size_t, 1 + rank<T>::value> {}; // Standard containers template<class T> struct rank<T, std::void_t<typename T::iterator, typename T::value_type>> : std::integral_constant<std::size_t, 1 + rank<typename T::value_type>::value> {}; int main() { using T1 = std::list<std::set<std::array<std::vector<int>, 4>>>; using T2 = std::list<std::set<std::vector<int>[4]>>; std::cout << rank<T1>(); // Output : 4 std::cout << rank<T2>(); // Output : 4 }
Container types can be further restricted if needed.
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With