I'm often using dplyr case_when with several logical conditions. Because case_when evaluates sequentially, sometimes an earlier case applies and then is "taken off" the list even further conditions may also apply. Sometimes I make mistakes and think a case is being activated but it isn't. Has anyone created some code that works with the case_when syntax that shows how many or which rows end up in each case of case_when? Here's an example of case_when that would benefit from this.
mtcars |>
mutate(
n_gears = case_when(
gear == 5 ~ "perfect",
gear == 4 ~ "bad",
gear >= 3 ~ "perfect"
)
)
I don't know of a baked-in function that will do what you want, but you can try this hacked up (under-tested) verbose version of case_when()
:
case_when_verbose <- function(..., .default = NULL, .envir = parent.frame()) {
orig_args <- setdiff(names(formals(dplyr::case_when)), c("...", ".default"))
dots <- list(...)
if (!is.null(names(dots))) dots <- dots[ !names(dots) %in% orig_args ]
nms <- sapply(dots, function(dot) deparse(as.list(dot)[[2]]))
res <- lapply(dots, function(dot) eval(as.list(dot)[[2]], envir = .envir))
if (!is.null(.default)) {
nms <- c(nms, ".default")
res <- c(res, list(!Reduce(`|`, res)))
}
res_eff <- c(res[1], lapply(seq_along(res)[-1], function(i) !Reduce(`|`, res[1:(i-1)]) & res[[i]]))
eff <- tibble(condition = nms, matched = sapply(res, sum, na.rm = TRUE),
effective = sapply(res_eff, sum, na.rm = TRUE))
cat("## case_when_verbose():\n", paste("##", format(eff), collapse = "\n"), "\n", sep = "")
cl <- match.call()
cl[[1]] <- substitute(dplyr::case_when)
eval(cl, envir = .envir)
}
mtcars |>
mutate(
n_gears = case_when_verbose(
gear == 5 ~ "perfect",
gear == 4 ~ "bad",
gear >= 3 ~ "perfect",
.default = "unk"
)
)
# ## case_when_verbose():
# ## # A tibble: 4 × 3
# ## condition matched effective
# ## <chr> <int> <int>
# ## 1 gear == 5 5 5
# ## 2 gear == 4 12 12
# ## 3 gear >= 3 32 15
# ## 4 .default 0 0
# mpg cyl disp hp drat wt qsec vs am gear carb n_gears
# Mazda RX4 21.0 6 160.0 110 3.90 2.620 16.46 0 1 4 4 bad
# Mazda RX4 Wag 21.0 6 160.0 110 3.90 2.875 17.02 0 1 4 4 bad
# Datsun 710 22.8 4 108.0 93 3.85 2.320 18.61 1 1 4 1 bad
# Hornet 4 Drive 21.4 6 258.0 110 3.08 3.215 19.44 1 0 3 1 perfect
# Hornet Sportabout 18.7 8 360.0 175 3.15 3.440 17.02 0 0 3 2 perfect
# Valiant 18.1 6 225.0 105 2.76 3.460 20.22 1 0 3 1 perfect
# Duster 360 14.3 8 360.0 245 3.21 3.570 15.84 0 0 3 4 perfect
# Merc 240D 24.4 4 146.7 62 3.69 3.190 20.00 1 0 4 2 bad
# Merc 230 22.8 4 140.8 95 3.92 3.150 22.90 1 0 4 2 bad
# Merc 280 19.2 6 167.6 123 3.92 3.440 18.30 1 0 4 4 bad
# Merc 280C 17.8 6 167.6 123 3.92 3.440 18.90 1 0 4 4 bad
# Merc 450SE 16.4 8 275.8 180 3.07 4.070 17.40 0 0 3 3 perfect
# Merc 450SL 17.3 8 275.8 180 3.07 3.730 17.60 0 0 3 3 perfect
# Merc 450SLC 15.2 8 275.8 180 3.07 3.780 18.00 0 0 3 3 perfect
# Cadillac Fleetwood 10.4 8 472.0 205 2.93 5.250 17.98 0 0 3 4 perfect
# Lincoln Continental 10.4 8 460.0 215 3.00 5.424 17.82 0 0 3 4 perfect
# Chrysler Imperial 14.7 8 440.0 230 3.23 5.345 17.42 0 0 3 4 perfect
# Fiat 128 32.4 4 78.7 66 4.08 2.200 19.47 1 1 4 1 bad
# Honda Civic 30.4 4 75.7 52 4.93 1.615 18.52 1 1 4 2 bad
# Toyota Corolla 33.9 4 71.1 65 4.22 1.835 19.90 1 1 4 1 bad
# Toyota Corona 21.5 4 120.1 97 3.70 2.465 20.01 1 0 3 1 perfect
# Dodge Challenger 15.5 8 318.0 150 2.76 3.520 16.87 0 0 3 2 perfect
# AMC Javelin 15.2 8 304.0 150 3.15 3.435 17.30 0 0 3 2 perfect
# Camaro Z28 13.3 8 350.0 245 3.73 3.840 15.41 0 0 3 4 perfect
# Pontiac Firebird 19.2 8 400.0 175 3.08 3.845 17.05 0 0 3 2 perfect
# Fiat X1-9 27.3 4 79.0 66 4.08 1.935 18.90 1 1 4 1 bad
# Porsche 914-2 26.0 4 120.3 91 4.43 2.140 16.70 0 1 5 2 perfect
# Lotus Europa 30.4 4 95.1 113 3.77 1.513 16.90 1 1 5 2 perfect
# Ford Pantera L 15.8 8 351.0 264 4.22 3.170 14.50 0 1 5 4 perfect
# Ferrari Dino 19.7 6 145.0 175 3.62 2.770 15.50 0 1 5 6 perfect
# Maserati Bora 15.0 8 301.0 335 3.54 3.570 14.60 0 1 5 8 perfect
# Volvo 142E 21.4 4 121.0 109 4.11 2.780 18.60 1 1 4 2 bad
The aesthetics can be cleaned up, but the interim action is to print to the console a quick summary of the conditions, the number of rows that matched, and the number of rows that matched and did not match any of the previous conditions.
This summary frame is just a side-effect printed to the console, it is not stored anywhere. Because the arguments are all passed explicitly to dplyr::case_when(...)
, this function can be used (afaict) anywhere case_when
can during development (I recommend against deploying this to production :-). And because the return value is actually from case_when()
, the summary frame is not accessible later in the pipe.
Edit: I added explicit .default=
and other case_when()
arguments to break it out if used, the output will include an extra row indicating how often it was matched/used (and will not include that row if missing). I also actively guard against other args to case_when(.ptype=, .size=)
so that they aren't inadvertently captured. Thanks to @SamR for the suggestion.
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With