I'm building a static binary out of several source files and libraries, and I want to control the order in which the functions are put into the resulting binary.
The background is, I have external code which is linked against offsets in this binary. Now if I change the source, all the offsets change because gcc may decide to order the functions differently, so I want to put the referenced functions at the beginning in a fixed order so their offsets stay unchanged...
I looked through ld's documentation but couldn't find anything about order of functions.
The only thing i found was -fno-toplevel-reorder
which doesn't really help me.
There is really no clean and reliable way of forcing a function to a particular address (except for the entry function) or even forcing functions having a particular order (and if you could enforce the order that would still not mean that the addresses stay the same when the source is changed!).
The biggest problem that I see is that even if it may be possible to fix a function to some address, it will be sheer impossible to fix all of them to exactly the addresses that the already existing external program expects (assuming you cannot modify this program). If that actually worked, it would be total coincidence and sheer luck.
It might be almost easiest to provide trampolines at the addresses that the other program expects, and having the real functions (whereever they may be) pointed to by these. That would require your code to use a different base address, so the actual program code doesn't collide with the trampolines.
There are three things that almost work for giving functions fixed addresses:
__attribute__ ((section ("some name")))
. Unluckily, .text
always appears as the first section, so if anything in .text
changes so the size is bumped over the 512 byte boundary, your offsets will change. By default (but see below) you can't get a section to start before .text
.-falign-functions=n
commandline option lets you align functions to a boundary. Normally this is something around 16 bytes. Now, you could choose a large value like for example 1024. That will waste an immense amount of space, but it will also make sure that as long as functions only change moderately, the addresses of the following functions will remain the same. Obviously it still does not prevent the compiler/linker from reordering entire blocks when it feels like it (though -fno-toplevel-reorder
will prevent this at least partially)..text
), so changes in .text
won't move your functions around.Update: The "gcc" tag suggests that you probably target *NIX, so again this is probably not going to help you, but... if you have the option to use COFF, dollar-sign sections might work (the info might be interesting for others, in any case).
I just stumbled across this today (emphasis mine):
The "$" character (dollar sign) has a special interpretation in section names in object files. When determining the image section that will contain the contents of an object section, the linker discards the "$" and all characters that follow it. Thus, an object section named .text$X actually contributes to the .text section in the image. However, the characters following the "$" determine the ordering of the contributions to the image section. All contributions with the same object-section name are allocated contiguously in the image, and the blocks of contributions are sorted in lexical order by object-section name. Therefore, everything in object files with section name .text$X ends up together, after the .text$W contributions and before the .text$Y contributions.
If the documentation does not lie (and if I'm not reading wrong), this means you should be able to pack all the functions that you want located in the front into one section .text$A
, and everything else into .text$B
, and it should do just that.
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With