Logo Questions Linux Laravel Mysql Ubuntu Git Menu
 

How can I create a custom band-pass filter?

In this research paper, in the Section 4.1(Preprocessing), an equation of a Bandpass filter is given:

enter image description here

Where,

enter image description here

Now, I have implemented this like the following:

https://dotnetfiddle.net/ZhucE2

But, this code produces nothing.

like image 610
user366312 Avatar asked Jun 11 '16 23:06

user366312


1 Answers

You need to create image of your kernel, then to convolve it with your image. fft is used for optimization of convolution for large images. You can use filter2D function to make opencv do everything for you.

Kernel image:
enter image description here
Source image:
Source image
Convolution applied:
enter image description here
Trhesholding:
enter image description here

Please see code below:

import cv2
import math
import numpy as np

class Kernel(object):
    def H_Function(self, Dh, Dv, u, v, centerX, centerY, theta, n):
        return 1 / (1 + 0.414 * math.sqrt(math.pow(self.U_Star(u, centerX, centerY, theta) / Dh + self.V_Star(v, centerX, centerY, theta) / Dv, 2 * n)))

    def U_Star(self, u, centerX, centerY, theta):
        return math.cos(theta) * (u + self.Tx(centerX, theta)) + math.sin(theta) * (u + self.Ty(centerY, theta))

    def V_Star(self, u, centerX, centerY, theta):
        return (-math.sin(theta)) * (u + self.Tx(centerX, theta)) + math.cos(theta) * (u + self.Ty(centerY, theta))

    def Tx(self, center, theta):
        return center * math.cos(theta)

    def Ty(self, center, theta):
        return center * math.sin(theta)

K = Kernel()

size = 40, 40
kernel = np.zeros(size, dtype=np.float)
Dh=2
Dv=2
centerX = -size[0] / 2
centerY = -size[1] / 2
theta=0.9
n=4

for u in range(0, size[0]):
    for v in range(0, size[1]):
        kernel[u][v] = K.H_Function(Dh, Dv, u, v, centerX, centerY, theta, n) 
kernelNorm = np.copy(kernel)
cv2.normalize(kernel, kernel, 1.0, 0, cv2.NORM_L1)
cv2.normalize(kernelNorm, kernelNorm, 0, 255, cv2.NORM_MINMAX)
cv2.imwrite("kernel.jpg", kernelNorm)

imgSrc = cv2.imread('src.jpg',0)

convolved = cv2.filter2D(imgSrc,-1,kernel)
cv2.normalize(convolved, convolved, 0, 255, cv2.NORM_MINMAX)
cv2.imwrite("conv.jpg", convolved)
th, thresholded = cv2.threshold(convolved, 100, 255, cv2.THRESH_BINARY)
cv2.imwrite("thresh.jpg", thresholded)
like image 140
taarraas Avatar answered Oct 14 '22 05:10

taarraas