I have a matrix as shown below;
matrix=""" 8 1 A A A A 8
8 5 A A A 3 8
7 2 A A 1 4 7
6 1 3 A 2 5 7
2 4 5 A 1 1 1"""
And here's my code block:
lines= [i.strip().split() for i in matrix.splitlines()]
lst=[[lines[i][j] for i in range(len(lines))]for j in range(len(lines[0]))]
h=0
while h<=len(lines[0]):
for i in range(len(lines[0])-1,0,-1):
for j in range(len(lines)-1,-1,-1):
for k in lst:
if k.count('A')==len(lines):
if lines[j][i-1]=='A':
lines[j][i-1]=lines[j][i]
lines[j][i]='A'
h+=1
for line in lines:
print(*(i or " " for i in line) , sep=" ")
If a column full of A's, I want to move that column to the most right side, but my code moves all A's to right. This is my output:
8 1 8 A A A A
8 5 3 8 A A A
7 2 1 4 7 A A
6 1 3 2 5 7 A
2 4 5 1 1 1 A
I want a output something like that:
8 1 A A A 8 A
8 5 A A 3 8 A
7 2 A 1 4 7 A
6 1 3 2 5 7 A
2 4 5 1 1 1 A
You can use zip()
to transpose the matrix, sort all that are pure "A"
to its end and reverse-transpose with zip()
again:
matrix=""" 8 1 A A A A 8
8 5 A A A 3 8
7 2 A A 1 4 7
6 1 3 A 2 5 7
2 4 5 A 1 1 1"""
# string to list of lists of strings
m = [[x.strip() for x in line.split()] for line in matrix.split("\n")]
print(*m,sep="\n")
# transpose and sort
t_m = [list(line) for line in zip(*m)]
t_m.sort(key = lambda x: all(k=="A" for k in x))
# reverse transpose
m = [list(line) for line in zip(*t_m)]
print(*m,sep="\n")
Output:
# before
['8', '1', 'A', 'A', 'A', 'A', '8']
['8', '5', 'A', 'A', 'A', '3', '8']
['7', '2', 'A', 'A', '1', '4', '7']
['6', '1', '3', 'A', '2', '5', '7']
['2', '4', '5', 'A', '1', '1', '1']
# after
['8', '1', 'A', 'A', 'A', '8', 'A']
['8', '5', 'A', 'A', '3', '8', 'A']
['7', '2', 'A', '1', '4', '7', 'A']
['6', '1', '3', '2', '5', '7', 'A']
['2', '4', '5', '1', '1', '1', 'A']
The transposed data looks like this:
# before sorting
['8', '8', '7', '6', '2']
['1', '5', '2', '1', '4']
['A', 'A', 'A', '3', '5']
['A', 'A', 'A', 'A', 'A'] # this is the column you want to sort behind all others
['A', 'A', '1', '2', '1']
['A', '3', '4', '5', '1']
['8', '8', '7', '7', '1']
# after sort
['8', '8', '7', '6', '2']
['1', '5', '2', '1', '4']
['A', 'A', 'A', '3', '5']
['A', 'A', '1', '2', '1']
['A', '3', '4', '5', '1']
['8', '8', '7', '7', '1']
['A', 'A', 'A', 'A', 'A'] # now it is here
The sort/sorting works because it is only True
if the whole row consists of 'A'
(True == 1
) all others are False == 0
.
Sorting is stable so it does not change the relative orders between rows that evaluate False
.
Here's a way using numpy
:
s = np.array([x.strip() for x in matrix.split()]).reshape(5,7)
print(s)
array[['8', '1', 'A', 'A', 'A', 'A', '8'],
['8', '5', 'A', 'A', 'A', '3', '8'],
['7', '2', 'A', 'A', '1', '4', '7'],
['6', '1', '3', 'A', '2', '5', '7'],
['2', '4', '5', 'A', '1', '1', '1']]
You could use np.flatnonzero
to locate columns where all
values are 0
, and swap them with the last:
m = np.flatnonzero((s == 'A').all(axis=0))[0]
s.T[[m, s.shape[1]-1]] = s.T[[s.shape[1]-1, m]]
array([['8', '1', 'A', '8', 'A', 'A', 'A'],
['8', '5', 'A', '8', 'A', '3', 'A'],
['7', '2', 'A', '7', '1', '4', 'A'],
['6', '1', '3', '7', '2', '5', 'A'],
['2', '4', '5', '1', '1', '1', 'A']], dtype='<U21')
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With