When compiling a function in theano
, a shared variable(say X) can be updated by specifying updates=[(X, new_value)]
. Now I am trying to update only subset of a shared variable:
from theano import tensor as T from theano import function import numpy X = T.shared(numpy.array([0,1,2,3,4])) Y = T.vector() f = function([Y], updates=[(X[2:4], Y)] # error occur: # 'update target must # be a SharedVariable'
The codes will raise a error "update target must be a SharedVariable", I guess that means update targets can't be non-shared variables. So is there any way to compile a function to just udpate subset of shared variables?
Use set_subtensor or inc_subtensor:
from theano import tensor as T from theano import function, shared import numpy X = shared(numpy.array([0,1,2,3,4])) Y = T.vector() X_update = (X, T.set_subtensor(X[2:4], Y)) f = function([Y], updates=[X_update]) f([100,10]) print X.get_value() # [0 1 100 10 4]
There's now a page about this in the Theano FAQ: http://deeplearning.net/software/theano/tutorial/faq_tutorial.html
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With