Logo Questions Linux Laravel Mysql Ubuntu Git Menu
 

Hierarchical data: efficiently build a list of every descendant for each node

I have a two column data set depicting multiple child-parent relationships that form a large tree. I would like to use this to build an updated list of every descendant for each node.

Original Input:

   child  parent
1   2010    1000
7   2100    1000
5   2110    1000
3   3000    2110
2   3011    2010
4   3033    2100
0   3102    2010
6   3111    2110

Graphical depiction of relationships:

example-data-relationship-tree

Expected output:

    descendant  ancestor
0         2010      1000
1         2100      1000
2         2110      1000
3         3000      1000
4         3011      1000
5         3033      1000
6         3102      1000
7         3111      1000
8         3011      2010
9         3102      2010
10        3033      2100
11        3000      2110
12        3111      2110

Originally I decided to use a recursive solution with DataFrames. It works as intended, but Pandas is awfully inefficient. My research has led me to believe that an implementation using NumPy arrays (or other simple data structures) would be much faster on large data sets (of 10's of thousands of records).

Solution using data frames:

import pandas as pd

df = pd.DataFrame(
    {
        'child':     [3102, 2010, 3011, 3000, 3033, 2110, 3111, 2100],
        'parent':    [2010, 1000, 2010, 2110, 2100, 1000, 2110, 1000]
    },  columns=['child', 'parent']
)


def get_ancestry_dataframe_flat(df):

    def get_child_list(parent_id):

        list_of_children = list()
        list_of_children.append(df[df['parent'] == parent_id]['child'].values)

        for i, r in df[df['parent'] == parent_id].iterrows():
            if r['child'] != parent_id:
                list_of_children.append(get_child_list(r['child']))

        # flatten list
        list_of_children = [item for sublist in list_of_children for item in sublist]
        return list_of_children

    new_df = pd.DataFrame(columns=['descendant', 'ancestor']).astype(int)
    for index, row in df.iterrows():
        temp_df = pd.DataFrame(columns=['descendant', 'ancestor'])
        temp_df['descendant'] = pd.Series(get_child_list(row['parent']))
        temp_df['ancestor'] = row['parent']
        new_df = new_df.append(temp_df)

    new_df = new_df\
        .drop_duplicates()\
        .sort_values(['ancestor', 'descendant'])\
        .reset_index(drop=True)

    return new_df

Because using pandas DataFrames in this way is very inefficient on large data sets, I need to improve the performance of this operation. My understanding is that this can be done by using more efficient data structures better suited for looping and recursion. I want to perform this same operation in the most efficient way possible.

Specifically, I'm asking for optimization of speed.

like image 702
taky2 Avatar asked Oct 13 '17 04:10

taky2


People also ask

Which data structure is hierarchical?

Hierarchical data is a data structure when items are linked to each other in parent-child relationships in an overall tree structure. Think of data like a family tree, with grandparents, parents, children, and grandchildren forming a hierarchy of connected data.


1 Answers

This is a method using numpy to iterate down the tree a generation at a time.

Code:

import numpy as np
import pandas as pd  # only used to return a dataframe


def list_ancestors(edges):
    """
    Take edge list of a rooted tree as a numpy array with shape (E, 2),
    child nodes in edges[:, 0], parent nodes in edges[:, 1]
    Return pandas dataframe of all descendant/ancestor node pairs

    Ex:
        df = pd.DataFrame({'child': [200, 201, 300, 301, 302, 400],
                           'parent': [100, 100, 200, 200, 201, 300]})

        df
           child  parent
        0    200     100
        1    201     100
        2    300     200
        3    301     200
        4    302     201
        5    400     300

        list_ancestors(df.values)

        returns

            descendant  ancestor
        0          200       100
        1          201       100
        2          300       200
        3          300       100
        4          301       200
        5          301       100
        6          302       201
        7          302       100
        8          400       300
        9          400       200
        10         400       100
    """
    ancestors = []
    for ar in trace_nodes(edges):
        ancestors.append(np.c_[np.repeat(ar[:, 0], ar.shape[1]-1),
                               ar[:, 1:].flatten()])
    return pd.DataFrame(np.concatenate(ancestors),
                        columns=['descendant', 'ancestor'])


def trace_nodes(edges):
    """
    Take edge list of a rooted tree as a numpy array with shape (E, 2),
    child nodes in edges[:, 0], parent nodes in edges[:, 1]
    Yield numpy array with cross-section of tree and associated
    ancestor nodes

    Ex:
        df = pd.DataFrame({'child': [200, 201, 300, 301, 302, 400],
                           'parent': [100, 100, 200, 200, 201, 300]})

        df
           child  parent
        0    200     100
        1    201     100
        2    300     200
        3    301     200
        4    302     201
        5    400     300

        trace_nodes(df.values)

        yields

        array([[200, 100],
               [201, 100]])

        array([[300, 200, 100],
               [301, 200, 100],
               [302, 201, 100]])

        array([[400, 300, 200, 100]])
    """
    mask = np.in1d(edges[:, 1], edges[:, 0])
    gen_branches = edges[~mask]
    edges = edges[mask]
    yield gen_branches
    while edges.size != 0:
        mask = np.in1d(edges[:, 1], edges[:, 0])
        next_gen = edges[~mask]
        gen_branches = numpy_col_inner_many_to_one_join(next_gen, gen_branches)
        edges = edges[mask]
        yield gen_branches


def numpy_col_inner_many_to_one_join(ar1, ar2):
    """
    Take two 2-d numpy arrays ar1 and ar2,
    with no duplicate values in first column of ar2
    Return inner join of ar1 and ar2 on
    last column of ar1, first column of ar2

    Ex:

        ar1 = np.array([[1,  2,  3],
                        [4,  5,  3],
                        [6,  7,  8],
                        [9, 10, 11]])

        ar2 = np.array([[ 1,  2],
                        [ 3,  4],
                        [ 5,  6],
                        [ 7,  8],
                        [ 9, 10],
                        [11, 12]])

        numpy_col_inner_many_to_one_join(ar1, ar2)

        returns

        array([[ 1,  2,  3,  4],
               [ 4,  5,  3,  4],
               [ 9, 10, 11, 12]])
    """
    ar1 = ar1[np.in1d(ar1[:, -1], ar2[:, 0])]
    ar2 = ar2[np.in1d(ar2[:, 0], ar1[:, -1])]
    if 'int' in ar1.dtype.name and ar1[:, -1].min() >= 0:
        bins = np.bincount(ar1[:, -1])
        counts = bins[bins.nonzero()[0]]
    else:
        counts = np.unique(ar1[:, -1], False, False, True)[1]
    left = ar1[ar1[:, -1].argsort()]
    right = ar2[ar2[:, 0].argsort()]
    return np.concatenate([left[:, :-1],
                           right[np.repeat(np.arange(right.shape[0]),
                                           counts)]], 1)

Timing Comparison:

Test cases 1 & 2 provided by @taky2, test cases 3 & 4 comparing performance on tall and wide tree structures respectively – most use cases are likely somewhere in the middle.

df = pd.DataFrame(
    {
        'child': [3102, 2010, 3011, 3000, 3033, 2110, 3111, 2100],
        'parent': [2010, 1000, 2010, 2110, 2100, 1000, 2110, 1000]
    }
)

df2 = pd.DataFrame(
    {
        'child': [4321, 3102, 4023, 2010, 5321, 4200, 4113, 6525, 4010, 4001,
                  3011, 5010, 3000, 3033, 2110, 6100, 3111, 2100, 6016, 4311],
        'parent': [3111, 2010, 3000, 1000, 4023, 3011, 3033, 5010, 3011, 3102,
                   2010, 4023, 2110, 2100, 1000, 5010, 2110, 1000, 5010, 3033]
    }
)

df3 = pd.DataFrame(np.r_[np.c_[np.arange(1, 501), np.arange(500)],
                         np.c_[np.arange(501, 1001), np.arange(500)]],
                   columns=['child', 'parent'])

df4 = pd.DataFrame(np.r_[np.c_[np.arange(1, 101), np.repeat(0, 100)],
                         np.c_[np.arange(1001, 11001),
                               np.repeat(np.arange(1, 101), 100)]],
                   columns=['child', 'parent'])

%timeit get_ancestry_dataframe_flat(df)
10 loops, best of 3: 53.4 ms per loop

%timeit add_children_of_children(df)
1000 loops, best of 3: 1.13 ms per loop

%timeit all_descendants_nx(df)
1000 loops, best of 3: 675 µs per loop

%timeit list_ancestors(df.values)
1000 loops, best of 3: 391 µs per loop

%timeit get_ancestry_dataframe_flat(df2)
10 loops, best of 3: 168 ms per loop

%timeit add_children_of_children(df2)
1000 loops, best of 3: 1.8 ms per loop

%timeit all_descendants_nx(df2)
1000 loops, best of 3: 1.06 ms per loop

%timeit list_ancestors(df2.values)
1000 loops, best of 3: 933 µs per loop

%timeit add_children_of_children(df3)
10 loops, best of 3: 156 ms per loop

%timeit all_descendants_nx(df3)
1 loop, best of 3: 952 ms per loop

%timeit list_ancestors(df3.values)
10 loops, best of 3: 104 ms per loop

%timeit add_children_of_children(df4)
1 loop, best of 3: 503 ms per loop

%timeit all_descendants_nx(df4)
1 loop, best of 3: 238 ms per loop

%timeit list_ancestors(df4.values)
100 loops, best of 3: 2.96 ms per loop

Notes:

get_ancestry_dataframe_flat not timed on cases 3 & 4 due to time and memory concerns.

add_children_of_children modified to identify root node internally, but allowed to assume a unique root. First line root_node = (set(dataframe.parent) - set(dataframe.child)).pop() added.

all_descendants_nx modified to accept a dataframe as an argument, instead of pulling from an external namespace.

Example demonstrating proper behavior:

np.all(get_ancestry_dataframe_flat(df2).sort_values(['descendant', 'ancestor'])\
                                       .reset_index(drop=True) ==\
       list_ancestors(df2.values).sort_values(['descendant', 'ancestor'])\
                                 .reset_index(drop=True))
Out[20]: True
like image 61
EFT Avatar answered Oct 15 '22 20:10

EFT