The Problem
I'm trying to understand how Repa works and I was plaing with a "blur" example code from Repa Examples package. The code uses stencil2 Quasi Quote
:
[stencil2| 2 4 5 4 2
4 9 12 9 4
5 12 15 12 5
4 9 12 9 4
2 4 5 4 2 |]
Which is simply TemplateHaskell
snippet, which generates a function:
makeStencil2 5 5 coeffs where
{-# INLINE[~0] coeffs #-}
coeffs = \ ix -> case ix of
Z :. -2 :. -2 -> Just 2
Z :. -2 :. -1 -> Just 4
Z :. -2 :. 0 -> Just 5
Z :. -2 :. 1 -> Just 4
Z :. -2 :. 2 -> Just 2
[...]
_ -> Nothing
Its ok to use TH, but I would love to keep the coefs in an Repa Array, so I've changed the code to use an Repa Array instead, but my code works 2 times slower comparing to the original one.
Some fancy notes
I've noticed, that Repa authors use hardcoded 7 by 7 matrix of values to get coefficients: http://hackage.haskell.org/package/repa-3.2.3.3/docs/src/Data-Array-Repa-Stencil-Dim2.html#forStencil2 (see: template7x7)
Questions
The Code
Original blur function:
blur :: Monad m => Int -> Array U DIM2 Double -> m (Array U DIM2 Double)
blur !iterations arrInit
= go iterations arrInit
where go !0 !arr = return arr
go !n !arr
= do arr' <- computeP
$ A.smap (/ 159)
$ forStencil2 BoundClamp arr
[stencil2| 2 4 5 4 2
4 9 12 9 4
5 12 15 12 5
4 9 12 9 4
2 4 5 4 2 |]
go (n-1) arr'
my blur function:
blur !iterations arrInit = go iterations arrInit
where
stencilx7 = fromListUnboxed (Z :. 7 :. 7)
[ 0, 0, 0, 0, 0, 0, 0
, 0, 2, 4, 5, 4, 2, 0
, 0, 4, 9, 12, 9, 4, 0
, 0, 5, 12, 15, 12, 5, 0
, 0, 4, 9, 12, 9, 4, 0
, 0, 2, 4, 5, 4, 2, 0
, 0, 0, 0, 0, 0, 0, 0
] :: Array U DIM2 Int
magicf (Z :. x :. y) = Just $ fromIntegral $ unsafeIndex stencilx7 (Z:. (x+3) :. (y+3))
go !0 !arr = return arr
go !n !arr
= do
arr' <- computeP
$ A.smap (/ 159)
$ A.forStencil2 BoundClamp arr
$ makeStencil2 5 5 magicf
go (n-1) arr'
Rest of the code:
{-# LANGUAGE PackageImports, BangPatterns, TemplateHaskell, QuasiQuotes #-}
{-# OPTIONS -Wall -fno-warn-missing-signatures -fno-warn-incomplete-patterns #-}
import Data.List
import Control.Monad
import System.Environment
import Data.Word
import Data.Array.Repa.IO.BMP
import Data.Array.Repa.IO.Timing
import Data.Array.Repa as A
import qualified Data.Array.Repa.Repr.Unboxed as U
import Data.Array.Repa.Stencil as A
import Data.Array.Repa.Stencil.Dim2 as A
import Prelude as P
main
= do args <- getArgs
case args of
[iterations, fileIn, fileOut] -> run (read iterations) fileIn fileOut
_ -> usage
usage = putStr $ unlines
[ "repa-blur <iterations::Int> <fileIn.bmp> <fileOut.bmp>" ]
-- | Perform the blur.
run :: Int -> FilePath -> FilePath -> IO ()
run iterations fileIn fileOut
= do arrRGB <- liftM (either (error . show) id)
$ readImageFromBMP fileIn
arrRGB `deepSeqArray` return ()
let (arrRed, arrGreen, arrBlue) = U.unzip3 arrRGB
let comps = [arrRed, arrGreen, arrBlue]
(comps', tElapsed)
<- time $ P.mapM (process iterations) comps
putStr $ prettyTime tElapsed
let [arrRed', arrGreen', arrBlue'] = comps'
writeImageToBMP fileOut
(U.zip3 arrRed' arrGreen' arrBlue')
process :: Monad m => Int -> Array U DIM2 Word8 -> m (Array U DIM2 Word8)
process iterations
= promote >=> blur iterations >=> demote
{-# NOINLINE process #-}
promote :: Monad m => Array U DIM2 Word8 -> m (Array U DIM2 Double)
promote arr
= computeP $ A.map ffs arr
where {-# INLINE ffs #-}
ffs :: Word8 -> Double
ffs x = fromIntegral (fromIntegral x :: Int)
{-# NOINLINE promote #-}
demote :: Monad m => Array U DIM2 Double -> m (Array U DIM2 Word8)
demote arr
= computeP $ A.map ffs arr
where {-# INLINE ffs #-}
ffs :: Double -> Word8
ffs x = fromIntegral (truncate x :: Int)
Compile with: ghc -O2 -threaded -fllvm -fforce-recomp Main.hs -ddump-splices
Reading convolution coeffs from the array theoretically couldn't be as fast as soldering constants right in the compiled code, because the latter approach costs nothing on machine level.
No, GHC is able to boil down arbitrarily sized static stencils. See my implementation of static convolutions with fixed-vector
s of lambdas:
[dim2St| 1 2 1
0 0 0
-1 -2 -1 |]
-->
Dim2Stencil
n3
n3
(VecList
[VecList
[\ acc a -> return (acc + a),
\ acc a -> (return $ (acc + (2 * a))),
\ acc a -> return (acc + a)],
VecList
[\ acc _ -> return acc,
\ acc _ -> return acc,
\ acc _ -> return acc],
VecList
[\ acc a -> return (acc - a),
\ acc a -> (return $ (acc + (-2 * a))),
\ acc a -> return (acc - a)]])
(\ acc a reduce -> reduce acc a)
(return 0)
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With