I know that there's been some discussion of Matlab copyrighting their new default colormap, but I'm wondering if any intrepid user has created the colormap in Matplotlib.
Viridis is great, but it's a bit dark for what I'm trying to do.
Another criterion for Parula and Viridis is that they be colourblind-friendly, as in there should be no possibility for red–green confusion.
The new default colormap used by matplotlib. cm. ScalarMappable instances is 'viridis' (aka option D).
The best colormap for any given data set depends on many things including: Whether representing form or metric data ([Ware]) Your knowledge of the data set (e.g., is there a critical value from which the other values deviate?) If there is an intuitive color scheme for the parameter you are plotting.
In case the link that @tom provided breaks, here it is:
from matplotlib.colors import LinearSegmentedColormap
cm_data = [[0.2081, 0.1663, 0.5292], [0.2116238095, 0.1897809524, 0.5776761905],
[0.212252381, 0.2137714286, 0.6269714286], [0.2081, 0.2386, 0.6770857143],
[0.1959047619, 0.2644571429, 0.7279], [0.1707285714, 0.2919380952,
0.779247619], [0.1252714286, 0.3242428571, 0.8302714286],
[0.0591333333, 0.3598333333, 0.8683333333], [0.0116952381, 0.3875095238,
0.8819571429], [0.0059571429, 0.4086142857, 0.8828428571],
[0.0165142857, 0.4266, 0.8786333333], [0.032852381, 0.4430428571,
0.8719571429], [0.0498142857, 0.4585714286, 0.8640571429],
[0.0629333333, 0.4736904762, 0.8554380952], [0.0722666667, 0.4886666667,
0.8467], [0.0779428571, 0.5039857143, 0.8383714286],
[0.079347619, 0.5200238095, 0.8311809524], [0.0749428571, 0.5375428571,
0.8262714286], [0.0640571429, 0.5569857143, 0.8239571429],
[0.0487714286, 0.5772238095, 0.8228285714], [0.0343428571, 0.5965809524,
0.819852381], [0.0265, 0.6137, 0.8135], [0.0238904762, 0.6286619048,
0.8037619048], [0.0230904762, 0.6417857143, 0.7912666667],
[0.0227714286, 0.6534857143, 0.7767571429], [0.0266619048, 0.6641952381,
0.7607190476], [0.0383714286, 0.6742714286, 0.743552381],
[0.0589714286, 0.6837571429, 0.7253857143],
[0.0843, 0.6928333333, 0.7061666667], [0.1132952381, 0.7015, 0.6858571429],
[0.1452714286, 0.7097571429, 0.6646285714], [0.1801333333, 0.7176571429,
0.6424333333], [0.2178285714, 0.7250428571, 0.6192619048],
[0.2586428571, 0.7317142857, 0.5954285714], [0.3021714286, 0.7376047619,
0.5711857143], [0.3481666667, 0.7424333333, 0.5472666667],
[0.3952571429, 0.7459, 0.5244428571], [0.4420095238, 0.7480809524,
0.5033142857], [0.4871238095, 0.7490619048, 0.4839761905],
[0.5300285714, 0.7491142857, 0.4661142857], [0.5708571429, 0.7485190476,
0.4493904762], [0.609852381, 0.7473142857, 0.4336857143],
[0.6473, 0.7456, 0.4188], [0.6834190476, 0.7434761905, 0.4044333333],
[0.7184095238, 0.7411333333, 0.3904761905],
[0.7524857143, 0.7384, 0.3768142857], [0.7858428571, 0.7355666667,
0.3632714286], [0.8185047619, 0.7327333333, 0.3497904762],
[0.8506571429, 0.7299, 0.3360285714], [0.8824333333, 0.7274333333, 0.3217],
[0.9139333333, 0.7257857143, 0.3062761905], [0.9449571429, 0.7261142857,
0.2886428571], [0.9738952381, 0.7313952381, 0.266647619],
[0.9937714286, 0.7454571429, 0.240347619], [0.9990428571, 0.7653142857,
0.2164142857], [0.9955333333, 0.7860571429, 0.196652381],
[0.988, 0.8066, 0.1793666667], [0.9788571429, 0.8271428571, 0.1633142857],
[0.9697, 0.8481380952, 0.147452381], [0.9625857143, 0.8705142857, 0.1309],
[0.9588714286, 0.8949, 0.1132428571], [0.9598238095, 0.9218333333,
0.0948380952], [0.9661, 0.9514428571, 0.0755333333],
[0.9763, 0.9831, 0.0538]]
parula_map = LinearSegmentedColormap.from_list('parula', cm_data)
# For use of "viscm view"
test_cm = parula_map
if __name__ == "__main__":
import matplotlib.pyplot as plt
import numpy as np
try:
from viscm import viscm
viscm(parula_map)
except ImportError:
print("viscm not found, falling back on simple display")
plt.imshow(np.linspace(0, 100, 256)[None, :], aspect='auto',
cmap=parula_map)
plt.show()
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With