I want to group a vector based on the sum of the elements being less than or equal to n
. Assume the following,
set.seed(1)
x <- sample(10, 20, replace = TRUE)
#[1] 3 4 6 10 3 9 10 7 7 1 3 2 7 4 8 5 8 10 4 8
#Where,
n = 15
The expected output would be to group values while their sum is <= 15, i.e.
y <- c(1, 1, 1, 2, 2, 3, 4, 5 ,5, 5, 6, 6, 6, 7, 7, 8, 8, 9, 9, 10)
As you can see the sum is never greater than 15,
sapply(split(x, y), sum)
# 1 2 3 4 5 6 7 8 9 10
#13 13 9 10 15 12 12 13 14 8
NOTE: I will be running this on huge datasets (usually > 150 - 200GB) so efficiency is a must.
A method that I tried and comes close but fails is,
as.integer(cut(cumsum(x), breaks = seq(0, max(cumsum(x)) + 15, 15)))
#[1] 1 1 1 2 2 3 3 4 4 4 5 5 5 6 6 6 7 8 8 8
Here is my Rcpp
-solution (close to Khashaa's solution but a bit shorter/stripped down), because you said speed was important, Rcpp
is probably the way to go:
# create the data
set.seed(1)
x <- sample(10, 20, replace = TRUE)
y <- c(1, 1, 1, 2, 2, 3, 4, 5 ,5, 5, 6, 6, 6, 7, 7, 8, 8, 9, 9, 10)
# create the Rcpp function
library(Rcpp)
cppFunction('
IntegerVector sotosGroup(NumericVector x, int cutoff) {
IntegerVector groupVec (x.size());
int group = 1;
double runSum = 0;
for (int i = 0; i < x.size(); i++) {
runSum += x[i];
if (runSum > cutoff) {
group++;
runSum = x[i];
}
groupVec[i] = group;
}
return groupVec;
}
')
# use the function as usual
y_cpp <- sotosGroup(x, 15)
sapply(split(x, y_cpp), sum)
#> 1 2 3 4 5 6 7 8 9 10
#> 13 13 9 10 15 12 12 13 14 8
all.equal(y, y_cpp)
#> [1] TRUE
In case anyone needs to be convinced by the speed:
# Speed Benchmarks
library(data.table)
library(microbenchmark)
dt <- data.table(x)
frank <- function(DT, n = 15) {
DT[, xc := cumsum(x)]
b = DT[.(shift(xc, fill=0) + n + 1), on=.(xc), roll=-Inf, which=TRUE]
z = 1; res = z
while (!is.na(z))
res <- c(res, z <- b[z])
DT[, g := cumsum(.I %in% res)][]
}
microbenchmark(
frank(dt),
sotosGroup(x, 15),
times = 100
)
#> Unit: microseconds
#> expr min lq mean median uq max neval cld
#> frank(dt) 1720.589 1831.320 2148.83096 1878.0725 1981.576 13728.830 100 b
#> sotosGroup(x, 15) 2.595 3.962 6.47038 7.5035 8.290 11.579 100 a
This works, but can probably be improved:
x <- c(3L, 4L, 6L, 10L, 3L, 9L, 10L, 7L, 7L, 1L, 3L, 2L, 7L, 4L, 8L, 5L, 8L, 10L, 4L, 8L)
y <- as.integer(c(1, 1, 1, 2, 2, 3, 4, 5 ,5, 5, 6, 6, 6, 7, 7, 8, 8, 9, 9, 10))
n = 15
library(data.table)
DT = data.table(x,y)
DT[, xc := cumsum(x)]
b = DT[.(shift(xc, fill=0) + n + 1), on=.(xc), roll=-Inf, which=TRUE]
z = 1; res = logical(length(x))
while (!is.na(z) && z <= length(x)){
res[z] <- TRUE
z <- b[z]
}
DT[, g := cumsum(res)]
x y xc g
1: 3 1 3 1
2: 4 1 7 1
3: 6 1 13 1
4: 10 2 23 2
5: 3 2 26 2
6: 9 3 35 3
7: 10 4 45 4
8: 7 5 52 5
9: 7 5 59 5
10: 1 5 60 5
11: 3 6 63 6
12: 2 6 65 6
13: 7 6 72 6
14: 4 7 76 7
15: 8 7 84 7
16: 5 8 89 8
17: 8 8 97 8
18: 10 9 107 9
19: 4 9 111 9
20: 8 10 119 10
DT[, all(y == g)] # TRUE
How it works
The rolling join asks "if this is the start of a group, where will the next one start?" Then you can iterate over the result, starting from the first position, to find all the groups.
The last line DT[, g := cumsum(res)]
could also be done as a rolling join (maybe faster?):
DT[, g := data.table(r = which(res))[, g := .I][.(.I), on=.(r), roll=TRUE, x.g ]]
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With