My Data
df1 <- structure(list(ID = c("A", "A", "A", "B", "B", "C"), c1 = 1:6,
c2 = 1:6, myDate = c("01.01.2015", "02.02.2014", "03.01.2014",
"09.09.2009", "10.10.2010", "06.06.2011")), .Names = c("ID",
"c1", "c2", "myDate"), class = "data.frame", row.names = c(NA,-6L))
My desired output (note: A df, keeping all columns!):
ID c1 c2 myDate
A 3 3 03.01.2014
B 4 4 09.09.2009
C 6 6 06.06.2011
....
My Code
library(data.table)
setDT(df1)
df1[,myDate:=as.Date(myDate, "%d.%m.%Y")]
test2 <- df1[,.(myDate == min(myDate)), by = ID]
That gives me in my corresponding column (myDate) a logical where the condition matches. But, thats not df
and all the other columns get lost. I am fairly new to the data.table
package so any help would be appreciated.
We can use which.min
to get the index and use .SD
to get the Subset of Data.table.
setDT(df1)[, .SD[which.min(as.Date(myDate, '%d.%m.%Y'))], by = ID]
# ID c1 c2 myDate
#1: A 3 3 03.01.2014
#2: B 4 4 09.09.2009
#3: C 6 6 06.06.2011
Or if there are ties and we need all the min
value rows, use ==
setDT(df1)[, {tmp <- as.Date(myDate, '%d.%m.%Y'); .SD[tmp==min(tmp)] }, ID]
#ID c1 c2 myDate
#1: A 3 3 03.01.2014
#2: B 4 4 09.09.2009
#3: C 6 6 06.06.2011
Other option would be to get the row index (.I
) and then subset. It would be fast
setDT(df1)[df1[, .I[which.min(as.Date(myDate, '%d.%m.%Y'))], ID]$V1]
# ID c1 c2 myDate
#1: A 3 3 03.01.2014
#2: B 4 4 09.09.2009
#3: C 6 6 06.06.2011
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With