Logo Questions Linux Laravel Mysql Ubuntu Git Menu
 

Go << and >> operators

People also ask

What are operators << and >> used for?

In programming, an operator is a symbol that operates on a value or a variable. Operators are symbols that perform operations on variables and values. For example, + is an operator used for addition, while - is an operator used for subtraction.

What is the use of << and >> operator in C++?

In case of std::cout , << is used to write to standard output. >> is not overloaded for std::cout . So std::cout >> x would give compilation error. In case of std::cin , >> is used to read from standard input. << is not overloaded for std::cin .

Does Go have the operator?

In Go language, there are 6 bitwise operators which work at bit level or used to perform bit by bit operations. Following are the bitwise operators : & (bitwise AND): Takes two numbers as operands and does AND on every bit of two numbers.

What is the >> operator in C ++?

What are shift operators in C++? The bitwise shift operators are the right-shift operator (>>), which moves the bits of shift_expression to the right, and the left-shift operator (<<), which moves the bits of shift_expression to the left.


The super (possibly over) simplified definition is just that << is used for "times 2" and >> is for "divided by 2" - and the number after it is how many times.

So n << x is "n times 2, x times". And y >> z is "y divided by 2, z times".

For example, 1 << 5 is "1 times 2, 5 times" or 32. And 32 >> 5 is "32 divided by 2, 5 times" or 1.

All the other answers give the more technical definition, but nobody laid it out really bluntly and I thought you might want that.


From the spec at http://golang.org/doc/go_spec.html, it seems that at least with integers, it's a binary shift. for example, binary 0b00001000 >> 1 would be 0b00000100, and 0b00001000 << 1 would be 0b00010000.


Go apparently doesn't accept the 0b notation for binary integers. I was just using it for the example. In decimal, 8 >> 1 is 4, and 8 << 1 is 16. Shifting left by one is the same as multiplication by 2, and shifting right by one is the same as dividing by two, discarding any remainder.


The << and >> operators are Go Arithmetic Operators.

<<   left shift             integer << unsigned integer
>>   right shift            integer >> unsigned integer

The shift operators shift the left operand by the shift count specified by the right operand. They implement arithmetic shifts if the left operand is a signed integer and logical shifts if it is an unsigned integer. The shift count must be an unsigned integer. There is no upper limit on the shift count. Shifts behave as if the left operand is shifted n times by 1 for a shift count of n. As a result, x << 1 is the same as x*2 and x >> 1 is the same as x/2 but truncated towards negative infinity.


They are basically Arithmetic operators and its the same in other languages here is a basic PHP , C , Go Example

GO

package main

import (
    "fmt"
)

func main() {
    var t , i uint
    t , i = 1 , 1

    for i = 1 ; i < 10 ; i++ {
        fmt.Printf("%d << %d = %d \n", t , i , t<<i)
    }


    fmt.Println()

    t = 512
    for i = 1 ; i < 10 ; i++ {
        fmt.Printf("%d >> %d = %d \n", t , i , t>>i)
    }

}

GO Demo

C

#include <stdio.h>
int main()
{

    int t = 1 ;
    int i = 1 ;

    for(i = 1; i < 10; i++) {
        printf("%d << %d = %d \n", t, i, t << i);
    }

        printf("\n");

    t = 512;

    for(i = 1; i < 10; i++) {
        printf("%d >> %d = %d \n", t, i, t >> i);
    }    

  return 0;
}

C Demo

PHP

$t = $i = 1;

for($i = 1; $i < 10; $i++) {
    printf("%d << %d = %d \n", $t, $i, $t << $i);
}

print PHP_EOL;

$t = 512;

for($i = 1; $i < 10; $i++) {
    printf("%d >> %d = %d \n", $t, $i, $t >> $i);
}

PHP Demo

They would all output

1 << 1 = 2 
1 << 2 = 4 
1 << 3 = 8 
1 << 4 = 16 
1 << 5 = 32 
1 << 6 = 64 
1 << 7 = 128 
1 << 8 = 256 
1 << 9 = 512 

512 >> 1 = 256 
512 >> 2 = 128 
512 >> 3 = 64 
512 >> 4 = 32 
512 >> 5 = 16 
512 >> 6 = 8 
512 >> 7 = 4 
512 >> 8 = 2 
512 >> 9 = 1 

Go's << and >> are similar to shifts (that is: division or multiplication by a power of 2) in other languages, but because Go is a safer language than C/C++ it does some extra work when the shift count is a number.

Shift instructions in x86 CPUs consider only 5 bits (6 bits on 64-bit x86 CPUs) of the shift count. In languages like C/C++, the shift operator translates into a single CPU instruction.

The following Go code

x := 10
y := uint(1025)  // A big shift count
println(x >> y)
println(x << y)

prints

0
0

while a C/C++ program would print

5
20

<< is left shift. >> is sign-extending right shift when the left operand is a signed integer, and is zero-extending right shift when the left operand is an unsigned integer.

To better understand >> think of

var u uint32 = 0x80000000;
var i int32 = -2;

u >> 1;  // Is 0x40000000 similar to >>> in Java
i >> 1;  // Is -1 similar to >> in Java

So when applied to an unsigned integer, the bits at the left are filled with zero, whereas when applied to a signed integer, the bits at the left are filled with the leftmost bit (which is 1 when the signed integer is negative as per 2's complement).


In decimal math, when we multiply or divide by 10, we effect the zeros on the end of the number.

In binary, 2 has the same effect. So we are adding a zero to the end, or removing the last digit