If I have a Pandas dataframe, and a column that is a datetime type, I can get the year as follows:
df['year'] = df['date'].dt.year
With a dask dataframe, that does not work. If I compute first, like this:
df['year'] = df['date'].compute().dt.year
I get ValueError: Not all divisions are known, can't align partitions. Please use
set_indexor
set_partitionto set the index.
But if I do:
df['date'].head().dt.year
it works fine!
So how do I get the year (or week) of a datetime series in a dask dataframe?
The .dt
datetime namespace is present on Dask series objects. Here is a self-contained of its use:
In [1]: import pandas as pd
In [2]: df = pd.util.testing.makeTimeSeries().to_frame().reset_index().head(10)
In [3]: df # some pandas data to turn into a dask.dataframe
Out[3]:
index 0
0 2000-01-03 -0.034297
1 2000-01-04 -0.373816
2 2000-01-05 -0.844751
3 2000-01-06 0.924542
4 2000-01-07 0.507070
5 2000-01-10 0.216684
6 2000-01-11 1.191743
7 2000-01-12 -2.103547
8 2000-01-13 0.156629
9 2000-01-14 1.602243
In [4]: import dask.dataframe as dd
In [5]: ddf = dd.from_pandas(df, npartitions=3)
In [6]: ddf['year'] = ddf['index'].dt.year # use the .dt namespace
In [7]: ddf.head()
Out[7]:
index 0 year
0 2000-01-03 -0.034297 2000
1 2000-01-04 -0.373816 2000
2 2000-01-05 -0.844751 2000
3 2000-01-06 0.924542 2000
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With