I am looking to isolate the top 2 values per group for the following data.
Brand | Product | Rank
  A   |    P1   |   1000
      |    P2   |   1210
      |    P3   |   2000
      |    P4   |   600
      |    P5   |   756
      |    P6   |   867
  B   |    P1   |   549
      |    P2   |   1572
      |    P3   |   3490
      |    P4   |   2341
      |    P5   |   431
      |    P6   |   321
  C   |    P1   |   421
      |    P2   |   121
      |    P3   |   805
      |    P4   |   1202
      |    P5   |   4032
      |    P6   |   432
I want to be able to the top 2 values for each group (A, B, C).
Top_Products = df.nlargest(2, 'Rank')
This however only isolates the top 2 products.
Is there a way to get the top 2 products per Brand.
Desired Output:
Brand | Product | Rank
  A   |    P3   |   2000
      |    P2   |   1210
  B   |    P3   |   3490
      |    P4   |   2341
  C   |    P5   |   4032
      |    P4   |   1202
Thanks!
This should do the trick:
df.groupby('Brand').apply(lambda x: x.nlargest(2, 'Rank')).reset_index(drop=True)  
  Brand Product  Rank
0     A      P3  2000
1     A      P2  1210
2     B      P3  3490
3     B      P4  2341
4     C      P5  4032
5     C      P4  1202
                        If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With