I have a 3D surface, (think about the xy plane). The plane can be slanted. (think about a slope road).
Given a list of 3D coordinates that define the surface(Point3D1X
, Point3D1Y
, Point3D1Z
, Point3D12X
, Point3D2Y
, Point3D2Z
, Point3D3X
, Point3D3Y
, Point3D3Z
, and so on), how to calculate the area of the surface?
Note that my question here is analogous to finding area in 2D plane. In 2D plane we have a list of points that defines a polygon, and using this list of points we can find the area of the polygon. Now assuming that all these points have z
values in such a way that they are elevated in 3D to form a surface. My question is how to find the area of that 3D surface?
The surface area of a polyhedron is equal to the sum of the area of all of its faces. Said another way, the surface area is the total area covered by the net of a polyhedron.
Surface area is the sum of the areas of all faces (or surfaces) on a 3D shape. A cuboid has 6 rectangular faces. To find the surface area of a cuboid, add the areas of all 6 faces. We can also label the length (l), width (w), and height (h) of the prism and use the formula, SA=2lw+2lh+2hw, to find the surface area.
The area of the outside surface of a three-dimensional shape or a solid is called Surface Area of that surface. For example, a rectangular prism has 6 rectangular bases and lateral faces. Thus, the total surface area is equal to the sum of the areas of all 6 rectangles.
Since you say it's a polyhedron, stacker's link (http://softsurfer.com/Archive/algorithm_0101/algorithm_0101.htm) is applicable.
Here's my approximate C# translation of the C code for your situation:
// NOTE: The original code contained the following notice:
// ---------------------------------------
// Copyright 2000 softSurfer, 2012 Dan Sunday
// This code may be freely used and modified for any purpose
// providing that this copyright notice is included with it.
// iSurfer.org makes no warranty for this code, and cannot be held
// liable for any real or imagined damage resulting from its use.
// Users of this code must verify correctness for their application.
// ---------------------------------------
// area3D_Polygon(): computes the area of a 3D planar polygon
// Input: int n = the number of vertices in the polygon
// Point[] V = an array of n+2 vertices in a plane
// with V[n]=V[0] and V[n+1]=V[1]
// Point N = unit normal vector of the polygon's plane
// Return: the (float) area of the polygon
static float
area3D_Polygon( int n, Point3D[] V, Point3D N )
{
float area = 0;
float an, ax, ay, az; // abs value of normal and its coords
int coord; // coord to ignore: 1=x, 2=y, 3=z
int i, j, k; // loop indices
// select largest abs coordinate to ignore for projection
ax = (N.x>0 ? N.x : -N.x); // abs x-coord
ay = (N.y>0 ? N.y : -N.y); // abs y-coord
az = (N.z>0 ? N.z : -N.z); // abs z-coord
coord = 3; // ignore z-coord
if (ax > ay) {
if (ax > az) coord = 1; // ignore x-coord
}
else if (ay > az) coord = 2; // ignore y-coord
// compute area of the 2D projection
for (i=1, j=2, k=0; i<=n; i++, j++, k++)
switch (coord) {
case 1:
area += (V[i].y * (V[j].z - V[k].z));
continue;
case 2:
area += (V[i].x * (V[j].z - V[k].z));
continue;
case 3:
area += (V[i].x * (V[j].y - V[k].y));
continue;
}
// scale to get area before projection
an = Math.Sqrt( ax*ax + ay*ay + az*az); // length of normal vector
switch (coord) {
case 1:
area *= (an / (2*ax));
break;
case 2:
area *= (an / (2*ay));
break;
case 3:
area *= (an / (2*az));
break;
}
return area;
}
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With