I have a very complicated mathematica expression that I'd like to simplify by using a new, possibly dimensionless parameter.
An example of my expression is:
K=a*b*t/((t+f)c*d);
(the actual expression is monstrously large, thousands of characters). I'd like to replace all occurrences of the expression t/(t+f) with p
p=t/(t+f);
The goal here is to find a replacement so that all t's and f's are replaced by p. In this case, the replacement p is a nondimensionalized parameter, so it seems like a good candidate replacement.
I've not been able to figure out how to do this in mathematica (or if its possible). I tried:
eq1= K==a*b*t/((t+f)c*d);
eq2= p==t/(t+f);
Solve[{eq1,eq2},K]
Not surprisingly, this doesn't work. If there were a way to force it to solve for K in terms of p,a,b,c,d, this might work, but I can't figure out how to do that either. Thoughts?
Edit #1 (11/10/11 - 1:30) [deleted to simplify]
OK, new tact. I've taken p=ton/(ton+toff) and multiplied p by several expressions. I know that p can be completely eliminated. The new expression (in terms of p) is
testEQ = A B p + A^2 B p^2 + (A+B)p^3;
Then I made the substitution for p, and called (normal) FullSimplify, giving me this expression.
testEQ2= (ton (B ton^2 + A^2 B ton (toff + ton) +
A (ton^2 + B (toff + ton)^2)))/(toff + ton)^3;
Finally, I tried all of the suggestions below, except the last (not sure how it works yet!)
Only the eliminate option worked. So I guess I'll try this method from now on. Thank you.
EQ1 = a1 == (ton (B ton^2 + A^2 B ton (toff + ton) +
A (ton^2 + B (toff + ton)^2)))/(toff + ton)^3;
EQ2 = P1 == ton/(ton + toff);
Eliminate[{EQ1, EQ2}, {ton, toff}]
A B P1 + A^2 B P1^2 + (A + B) P1^3 == a1
I should add, if the goal is to make all substitutions that are possible, leaving the rest, I still don't know how to do that. But it appears that if a substitution can completely eliminate a few variables, Eliminate[] works best.
We now have implemented a new simplification program for Wolfram|Alpha, which allows Wolfram|Alpha to find even more alternate and simplified forms for algebraic expressions.
FullSimplify uses RootReduce on expressions that involve Root objects. FullSimplify does transformations on most kinds of special functions. With assumptions of the form ForAll[vars,axioms], FullSimplify can simplify expressions and equations involving symbolic functions. »
Have you tried this?
K = a*b*t/((t + f) c*d);
Solve[p == t/(t + f), t]
-> {{t -> -((f p)/(-1 + p))}}
Simplify[K /. %[[1]] ]
-> (a b p)/(c d)
EDIT: Oh, and are you aware of Eliminiate
?
Eliminate[{eq1, eq2}, {t,f}]
-> a b p == c d K && c != 0 && d != 0
Solve[%, K]
-> {{K -> (a b p)/(c d)}}
EDIT 2: Also, in this simple case, solving for K
and t
simultaneously seems to do the trick, too:
Solve[{eq1, eq2}, {K, t}]
-> {{K -> (a b p)/(c d), t -> -((f p)/(-1 + p))}}
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With