Logo Questions Linux Laravel Mysql Ubuntu Git Menu
 

Get coordinates of local maxima in 2D array above certain value

from PIL import Image
import numpy as np
from scipy.ndimage.filters import maximum_filter
import pylab

# the picture (256 * 256 pixels) contains bright spots of which I wanna get positions
# problem: data has high background around value 900 - 1000

im = Image.open('slice0000.png')
data = np.array(im)

# as far as I understand, data == maximum_filter gives True-value for pixels
# being the brightest in their neighborhood (here 10 * 10 pixels)

maxima = (data == maximum_filter(data,10))
# How can I get only maxima, outstanding the background a certain value, let's say 500 ?

I'm afraid I don't really understand the scipy.ndimage.filters.maximum_filter() function. Is there a way to obtain pixel-coordinates only within the spots and not within the background?

http://i.stack.imgur.com/RImHW.png (16-bit grayscale picture, 256*256 pixels)

like image 787
feinmann Avatar asked Feb 02 '12 11:02

feinmann


3 Answers

import numpy as np
import scipy
import scipy.ndimage as ndimage
import scipy.ndimage.filters as filters
import matplotlib.pyplot as plt

fname = '/tmp/slice0000.png'
neighborhood_size = 5
threshold = 1500

data = scipy.misc.imread(fname)

data_max = filters.maximum_filter(data, neighborhood_size)
maxima = (data == data_max)
data_min = filters.minimum_filter(data, neighborhood_size)
diff = ((data_max - data_min) > threshold)
maxima[diff == 0] = 0

labeled, num_objects = ndimage.label(maxima)
slices = ndimage.find_objects(labeled)
x, y = [], []
for dy,dx in slices:
    x_center = (dx.start + dx.stop - 1)/2
    x.append(x_center)
    y_center = (dy.start + dy.stop - 1)/2    
    y.append(y_center)

plt.imshow(data)
plt.savefig('/tmp/data.png', bbox_inches = 'tight')

plt.autoscale(False)
plt.plot(x,y, 'ro')
plt.savefig('/tmp/result.png', bbox_inches = 'tight')

Given data.png:

enter image description here

the above program yields result.png with threshold = 1500. Lower the threshold to pick up more local maxima:

enter image description here

References:

  • J.F. Sebastian counts nuclei
  • Joe Kington finds paw prints
  • Ivan finds local maximums
like image 188
unutbu Avatar answered Sep 28 '22 19:09

unutbu


import numpy as np
import scipy
import scipy.ndimage as ndimage
import scipy.ndimage.filters as filters
import matplotlib.pyplot as plt

fname = '/tmp/slice0000.png'
neighborhood_size = 5
threshold = 1500

data = scipy.misc.imread(fname)

data_max = filters.maximum_filter(data, neighborhood_size)
maxima = (data == data_max)
data_min = filters.minimum_filter(data, neighborhood_size)
diff = ((data_max - data_min) > threshold)
maxima[diff == 0] = 0

labeled, num_objects = ndimage.label(maxima)
xy = np.array(ndimage.center_of_mass(data, labeled, range(1, num_objects+1)))

plt.imshow(data)
plt.savefig('/tmp/data.png', bbox_inches = 'tight')

plt.autoscale(False)
plt.plot(xy[:, 1], xy[:, 0], 'ro')
plt.savefig('/tmp/result.png', bbox_inches = 'tight')

The previous entry was super useful to me, but the for loop slowed my application down. I found that ndimage.center_of_mass() does a great and fast job to get the coordinates... hence this suggestion.

like image 32
legazier Avatar answered Sep 28 '22 19:09

legazier


This can now be done with skimage.

from skimage.feature import peak_local_max
xy = peak_local_max(data, min_distance=2,threshold_abs=1500)

On my computer, for a VGA image size it runs about 4x faster than the above solution and also returned a more accurate position in certain cases.

like image 35
Eyal S. Avatar answered Sep 28 '22 19:09

Eyal S.