I have the following piece of code which uses an NB classifier for a multi class classification problem. The function preforms cross validation by storing the accuracies and printing the average later. What I instead want is a classification report specifying class wise precision and recall, instead of a mean accuracy score in the end.
import random
from sklearn import cross_validation
from sklearn.naive_bayes import MultinomialNB
def multinomial_nb_with_cv(x_train, y_train):
random.shuffle(X)
kf = cross_validation.KFold(len(X), n_folds=10)
acc = []
for train_index, test_index in kf:
y_true = y_train[test_index]
clf = MultinomialNB().fit(x_train[train_index],
y_train[train_index])
y_pred = clf.predict(x_train[test_index])
acc.append(accuracy_score(y_true, y_pred))
If I do not perform cross validation all I have to do is:
from sklearn.metrics import classification_report
from sklearn.naive_bayes import MultinomialNB
def multinomial_nb(x_train, y_train, x_test, y_test):
clf = MultinomialNB().fit(x_train, y_train)
y_pred = clf.predict(x_test)
y_true = y_test
print classification_report(y_true, y_pred)
And it gives me a report like this:
precision recall f1-score support
0 0.50 0.24 0.33 221
1 0.00 0.00 0.00 18
2 0.00 0.00 0.00 27
3 0.00 0.00 0.00 28
4 0.00 0.00 0.00 32
5 0.04 0.02 0.02 57
6 0.00 0.00 0.00 26
7 0.00 0.00 0.00 25
8 0.00 0.00 0.00 43
9 0.00 0.00 0.00 99
10 0.63 0.98 0.76 716
avg / total 0.44 0.59 0.48 1292
How can I get a similar report even in the case of cross validation?
You can use cross_val_predict
to generate your cross-validation prediction and then use classification_report
.
from sklearn.datasets import make_classification
from sklearn.cross_validation import cross_val_predict
from sklearn.naive_bayes import GaussianNB
from sklearn.metrics import classification_report
# generate some artificial data with 11 classes
X, y = make_classification(n_samples=2000, n_features=20, n_informative=10, n_classes=11, random_state=0)
# your classifier, assume GaussianNB here for non-integer data X
estimator = GaussianNB()
# generate your cross-validation prediction with 10 fold Stratified sampling
y_pred = cross_val_predict(estimator, X, y, cv=10)
y_pred.shape
Out[91]: (2000,)
# generate report
print(classification_report(y, y_pred))
precision recall f1-score support
0 0.47 0.36 0.41 181
1 0.38 0.46 0.41 181
2 0.45 0.53 0.48 182
3 0.29 0.45 0.35 183
4 0.37 0.33 0.35 183
5 0.40 0.44 0.42 182
6 0.27 0.13 0.17 183
7 0.47 0.44 0.45 182
8 0.34 0.27 0.30 182
9 0.41 0.44 0.42 179
10 0.42 0.41 0.41 182
avg / total 0.39 0.39 0.38 2000
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With