I'm not sure how to ask my question in a succinct way, so I'll start with examples and expand from there. I am working with VBA, but I think this problem is non language specific and would only require a bright mind that can provide a pseudo code framework. Thanks in advance for the help!
Example: I have 3 Character Arrays Like So:
Arr_1 = [X,Y,Z]
Arr_2 = [A,B]
Arr_3 = [1,2,3,4]
I would like to generate ALL possible permutations of the character arrays like so:
XA1
XA2
XA3
XA4
XB1
XB2
XB3
XB4
YA1
YA2
.
.
.
ZB3
ZB4
This can be easily solved using 3 while loops or for loops. My question is how do I solve for this if the # of arrays is unknown and the length of each array is unknown?
So as an example with 4 character arrays:
Arr_1 = [X,Y,Z]
Arr_2 = [A,B]
Arr_3 = [1,2,3,4]
Arr_4 = [a,b]
I would need to generate:
XA1a
XA1b
XA2a
XA2b
XA3a
XA3b
XA4a
XA4b
.
.
.
ZB4a
ZB4b
So the Generalized Example would be:
Arr_1 = [...]
Arr_2 = [...]
Arr_3 = [...]
.
.
.
Arr_x = [...]
Is there a way to structure a function that will generate an unknown number of loops and loop through the length of each array to generate the permutations? Or maybe there's a better way to think about the problem?
Thanks Everyone!
The exact formula is: =COMBIN(universe, sets). The number of four-character combinations that can be made from the alphabet is: =COMBIN(26, 4) or 14,950.
To find all possible permutations of a given string, you can use the itertools module which has a useful method called permutations(iterable[, r]). This method return successive r length permutations of elements in the iterable as tuples.
This is actually the easiest, most straightforward solution. The following is in Java, but it should be instructive:
public class Main {
public static void main(String[] args) {
Object[][] arrs = {
{ "X", "Y", "Z" },
{ "A", "B" },
{ "1", "2" },
};
recurse("", arrs, 0);
}
static void recurse (String s, Object[][] arrs, int k) {
if (k == arrs.length) {
System.out.println(s);
} else {
for (Object o : arrs[k]) {
recurse(s + o, arrs, k + 1);
}
}
}
}
(see full output)
Note: Java arrays are 0-based, so k
goes from 0..arrs.length-1
during the recursion, until k == arrs.length
when it's the end of recursion.
It's also possible to write a non-recursive solution, but frankly this is less intuitive. This is actually very similar to base conversion, e.g. from decimal to hexadecimal; it's a generalized form where each position have their own set of values.
public class Main {
public static void main(String[] args) {
Object[][] arrs = {
{ "X", "Y", "Z" },
{ "A", "B" },
{ "1", "2" },
};
int N = 1;
for (Object[] arr : arrs) {
N = N * arr.length;
}
for (int v = 0; v < N; v++) {
System.out.println(decode(arrs, v));
}
}
static String decode(Object[][] arrs, int v) {
String s = "";
for (Object[] arr : arrs) {
int M = arr.length;
s = s + arr[v % M];
v = v / M;
}
return s;
}
}
(see full output)
This produces the tuplets in a different order. If you want to generate them in the same order as the recursive solution, then you iterate through arrs
"backward" during decode
as follows:
static String decode(Object[][] arrs, int v) {
String s = "";
for (int i = arrs.length - 1; i >= 0; i--) {
int Ni = arrs[i].length;
s = arrs[i][v % Ni] + s;
v = v / Ni;
}
return s;
}
(see full output)
Thanks to @polygenelubricants for the excellent solution. Here is the Javascript equivalent:
var a=['0'];
var b=['Auto', 'Home'];
var c=['Good'];
var d=['Tommy', 'Hilfiger', '*'];
var attrs = [a, b, c, d];
function recurse (s, attrs, k) {
if(k==attrs.length) {
console.log(s);
} else {
for(var i=0; i<attrs[k].length;i++) {
recurse(s+attrs[k][i], attrs, k+1);
}
}
}
recurse('', attrs, 0);
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With