I'm trying to build a project using a static library, so that the binary can be used even if the library isn't installed. However, I get lots of errors about undefined symbols when I try to do so.
Looking at the library, I see it has tons of undefined symbols, even though it's a .a
static lib:
nm - u /usr/local/lib/libthis.a
....
U EVP_DigestFinal_ex
U EVP_DigestInit_ex
U EVP_DigestUpdate
U EVP_MD_CTX_cleanup
U EVP_MD_CTX_init
Those seem to be from openssl; others seem to be from libbzip2; etc.
Questions:
1. Why does the static (.a
) lib have dependencies on shared objects (e.g. libopenssl) that aren't statically compiled?
2. How do I solve this? Trying to manually add -lssl
doesn't seem to work. How do I get the binary to compile and not have external dependcies?
At link time, a static library can have unresolved symbols in it, as long as you don't need the unresolved symbols, and you don't need any symbol that is in a .o file that contains an unresolved symbol.
Yes for instance when you call windows functions from within your static lib they are normally from some dynamic library so there should be no difference.
The most significant advantage of shared libraries is that there is only one copy of code loaded in memory, no matter how many processes are using the library. For static libraries each process gets its own copy of the code.
The -static option links a program statically, in other words it does not require a dependency on dynamic libraries at runtime in order to run. To achieve static linking requires that the archive ( . a ) versions of your libraries exist on the system. so /usr/lib/libc.
Why does the static (.a) lib have dependencies on shared objects (e.g. libopenssl) that aren't statically compiled?
Just about every static library that you can build will have unresolved symbols, e.g.
int my_open_for_read(const char *filename)
{
return open(filename, O_RDONLY); // unresolved reference to open
}
As Marc Glisse pointed out, this a plain unresolved symbol, not a dependency on libc.so
.
- How do I solve this?
There is no problem to solve here. When you link your binary, you get to decide which libraries to link statically, and which to link dynamically.
Trying to manually add -lssl doesn't seem to work.
This should work:
gcc main.o -lthis -lssl
Possibly you did something like
gcc main.o -lssl -lthis
which is wrong: the order of libraries on the link line matters.
How do I get the binary to compile and not have external dependcies?
Most OSes support using fully-static binaries. Generally this should not be your goal: it makes for less portable binaries, and their use is strongly discouraged.
If you really do want to produce a fully-static binary, link it with -static
flag.
Why do you say full static is less portable?
Because they are.
if the user doesn't have the exact same build of the lib, the binary won't be portable with shared libs, but will be portable with static.
This is incorrect: most shared libraries support backward compatibility, e.g. libc.so.6
version 2.22 will happily run executables linked against version 2.3.6 from 10 years ago.
If you do ldd firefox
You need to pay attention to what you are doing:
file -L `which /usr/bin/firefox`
/usr/bin/firefox: POSIX shell script, ASCII text executable
If you look inside the shell script, you'll discover that it invokes /usr/lib/firefox/firefox
, and that binary is dynamically linked:
ldd /usr/lib/firefox/firefox
linux-vdso.so.1 => (0x00007ffca278d000)
libpthread.so.0 => /lib/x86_64-linux-gnu/libpthread.so.0 (0x00007f511731b000)
libdl.so.2 => /lib/x86_64-linux-gnu/libdl.so.2 (0x00007f5117117000)
libstdc++.so.6 => /usr/lib/x86_64-linux-gnu/libstdc++.so.6 (0x00007f5116e13000)
libm.so.6 => /lib/x86_64-linux-gnu/libm.so.6 (0x00007f5116b0d000)
libgcc_s.so.1 => /lib/x86_64-linux-gnu/libgcc_s.so.1 (0x00007f51168f7000)
libc.so.6 => /lib/x86_64-linux-gnu/libc.so.6 (0x00007f5116532000)
/lib64/ld-linux-x86-64.so.2 (0x00007f5117757000)
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With