In a project I'm working on I need to obtain a Gaussian fit from a set of points - needing mean and variance for some processing, and possibly an error degree (or accuracy level) to let me figure out if the set of points really have a normal distribution.
I've found this question
but it is limited to 3 points only - whereas I need a fit that can work with any number of points.
What I need is similar to the labview Gaussian Peak Fit
I have looked at mathdotnet and aforge.net (using both in the same project), but I haven't found anything.
Does anybody know any C# or (easily convertible) C/C++ or Java solutions?
Alternatively, I've been told that an iterative algorithm should be used - I could implement it by myself (if not too much math-complicated). Any idea about what I can use? I've read a lot of articles (on Wikipedia and others found via Google) but I haven't found any clear indication of a solution.
Just calculate the mean and standard deviation of your sample, those are the only two parameters of a Gaussian distribution.
For "goodness of fit", you can do something like mean-square error of the CDF.
In Math.Net (nuget), you can do:
var real_σ = 0.5;
var real_μ = 0;
//Define gaussian function
var gaussian = new Func<double, double, double, double>((σ, μ, x) =>
{
return Normal.PDF(μ, σ, x);
});
//Generate sample gaussian data
var data = Enumerable.Range(0, 41)
.Select(x => -2 + x * 0.1)
.Select(x => new { x, y = gaussian(real_σ, real_μ, x) });
var xs = data.Select(d => d.x).ToArray();
var ys = data.Select(d => d.y).ToArray();
var initialGuess_σ = 1;
var initialGuess_μ = 0;
var fit = Fit.Curve(xs, ys, gaussian, initialGuess_σ, initialGuess_μ);
//fit.Item1 = σ, fit.Item2 = μ
I've found a good implementation in ImageJ, a public domain image processing program, whose source code is available here
Converted to C# and adapted to my needs.
Thanks to you guys for your answers... not strictly related to the solution I found, but somehow I got there with your help :)
Here I show an example of how you can fit an arbitrary function with an arbitrary number of parameters with upper/lower bounds for each individual parameter. Just as RexCardan's example it is done using the MathNet library.
It is not very fast, but it works.
In order to fit a different function change the double gaussian(Vector<double> vectorArg)
method. If you change the number of vectorArg
s you also need to adjust:
lowerBound
, upperBound
and initialGuess
in CurveFit
.return z => f(new DenseVector(new[] { parameters[0], parameters[1], parameters[2], parameters[3], parameters[4], parameters[5], z }));
t => f(new DenseVector(new[] { p[0], p[1], p[2], p[3], p[4], p[5], t }))
using MathNet.Numerics;
using MathNet.Numerics.Distributions;
using MathNet.Numerics.LinearAlgebra;
using MathNet.Numerics.LinearAlgebra.Double;
using System;
using System.Linq;
static class GaussianFit
{
/// <summary>
/// Non-linear least square Gaussian curve fit to data.
/// </summary>
/// <param name="mu1">x position of the first Gaussian.</param>
/// <param name="mu2">x position of the second Gaussian.</param>
/// <returns>Array of the Gaussian profile.</returns>
public Func<double, double> CurveFit(double[] xData, double[] yData, double mu1, double mu2)
{
//Define gaussian function
double gaussian(Vector<double> vectorArg)
{
double x = vectorArg.Last();
double y =
vectorArg[0] * Normal.PDF(vectorArg[1], vectorArg[2], x)
+ vectorArg[3] * Normal.PDF(vectorArg[4], vectorArg[5], x);
return y;
}
var lowerBound = new DenseVector(new[] { 0, mu1 * 0.98, 0.05, 0, mu2 * 0.98, 0.05 });
var upperBound = new DenseVector(new[] { 1e10, mu1 * 1.02, 0.3, 1e10, mu2 * 1.02, 0.3 });
var initialGuess = new DenseVector(new[] { 1000, mu1, 0.2, 1000, mu2, 0.2 });
Func<double, double> fit = CurveFuncConstrained(
xData, yData, gaussian, lowerBound, upperBound, initialGuess
);
return fit;
}
/// <summary>
/// Non-linear least-squares fitting the points (x,y) to an arbitrary function y : x -> f(p0, p1, p2, x),
/// returning a function y' for the best fitting curve.
/// </summary>
public static Func<double, double> CurveFuncConstrained(
double[] x,
double[] y,
Func<Vector<double>, double> f,
Vector<double> lowerBound,
Vector<double> upperBound,
Vector<double> initialGuess,
double gradientTolerance = 1e-5,
double parameterTolerance = 1e-5,
double functionProgressTolerance = 1e-5,
int maxIterations = 1000
)
{
var parameters = CurveConstrained(
x, y, f,
lowerBound, upperBound, initialGuess,
gradientTolerance, parameterTolerance, functionProgressTolerance,
maxIterations
);
return z => f(new DenseVector(new[] { parameters[0], parameters[1], parameters[2], parameters[3], parameters[4], parameters[5], z }));
}
/// <summary>
/// Non-linear least-squares fitting the points (x,y) to an arbitrary function y : x -> f(p0, p1, p2, x),
/// returning its best fitting parameter p0, p1 and p2.
/// </summary>
public static Vector<double> CurveConstrained(
double[] x,
double[] y,
Func<Vector<double>, double> f,
Vector<double> lowerBound,
Vector<double> upperBound,
Vector<double> initialGuess,
double gradientTolerance = 1e-5,
double parameterTolerance = 1e-5,
double functionProgressTolerance = 1e-5,
int maxIterations = 1000
)
{
return FindMinimum.OfFunctionConstrained(
(p) => Distance.Euclidean(
Generate.Map(
x,
t => f(new DenseVector(new[] { p[0], p[1], p[2], p[3], p[4], p[5], t }))
),
y),
lowerBound,
upperBound,
initialGuess,
gradientTolerance,
parameterTolerance,
functionProgressTolerance,
maxIterations
);
}
To fit two Gaussians at x positions 10 and 20:
Func<double, double> fit = GaussianFit.Curvefit(x_data, y_data, 10, 20);
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With