I have been trying to rewrite the code from Python to Swift but I'm stuck on the function which should return the least-squares solution to a linear matrix equation. Does anyone know a library written in Swift which has an equivalent method to the numpy.linalg.lstsq
? I'd be grateful for your help.
Python code:
a = numpy.array([[p2.x-p1.x,p2.y-p1.y],[p4.x-p3.x,p4.y-p3.y],[p4.x-p2.x,p4.y-p2.y],[p3.x-p1.x,p3.y-p1.y]])
b = numpy.array([number1,number2,number3,number4])
res = numpy.linalg.lstsq(a,b)
result = [float(res[0][0]),float(res[0][1])]
return result
Swift code so far:
var matrix1 = [[p2.x-p1.x, p2.y-p1.y],[p4.x-p3.x, p4.y-p3.y], [p4.x-p2.x, p4.y-p2.y], [p3.x-p1.x, p3.y-p1.y]]
var matrix2 = [number1, number2, number3, number4]
So a least-squares solution minimizes the sum of the squares of the differences between the entries of A K x and b . In other words, a least-squares solution solves the equation Ax = b as closely as possible, in the sense that the sum of the squares of the difference b − Ax is minimized.
That line is called a Regression Line and has the equation ŷ= a + b x. The Least Squares Regression Line is the line that makes the vertical distance from the data points to the regression line as small as possible.
The least squares method is a statistical procedure to find the best fit for a set of data points by minimizing the sum of the offsets or residuals of points from the plotted curve. Least squares regression is used to predict the behavior of dependent variables.
The Accelerate framework included the LAPACK linear algebra package, which has a DGELS function to solve under- or overdetermined linear systems. From the documentation:
DGELS solves overdetermined or underdetermined real linear systems involving an M-by-N matrix A, or its transpose, using a QR or LQ factorization of A. It is assumed that A has full rank.
Here is an example how that function can be used from Swift. It is essentially a translation of this C sample code.
func solveLeastSquare(A A: [[Double]], B: [Double]) -> [Double]? {
precondition(A.count == B.count, "Non-matching dimensions")
var mode = Int8(bitPattern: UInt8(ascii: "N")) // "Normal" mode
var nrows = CInt(A.count)
var ncols = CInt(A[0].count)
var nrhs = CInt(1)
var ldb = max(nrows, ncols)
// Flattened columns of matrix A
var localA = (0 ..< nrows * ncols).map {
A[Int($0 % nrows)][Int($0 / nrows)]
}
// Vector B, expanded by zeros if ncols > nrows
var localB = B
if ldb > nrows {
localB.appendContentsOf([Double](count: ldb - nrows, repeatedValue: 0.0))
}
var wkopt = 0.0
var lwork: CInt = -1
var info: CInt = 0
// First call to determine optimal workspace size
dgels_(&mode, &nrows, &ncols, &nrhs, &localA, &nrows, &localB, &ldb, &wkopt, &lwork, &info)
lwork = Int32(wkopt)
// Allocate workspace and do actual calculation
var work = [Double](count: Int(lwork), repeatedValue: 0.0)
dgels_(&mode, &nrows, &ncols, &nrhs, &localA, &nrows, &localB, &ldb, &work, &lwork, &info)
if info != 0 {
print("A does not have full rank; the least squares solution could not be computed.")
return nil
}
return Array(localB.prefix(Int(ncols)))
}
Some notes:
dgels_()
modifies the passed matrix and vector data, and expects
the matrix as "flat" array containing the columns of A
.
Also the right-hand side is expected as an array with length max(M, N)
.
For this reason, the input data is copied to local variables first.dgels_()
, that's why
they are all stored in var
s.Int
and CInt
necessary.Example 1: Overdetermined system, from http://www.seas.ucla.edu/~vandenbe/103/lectures/ls.pdf.
let A = [[ 2.0, 0.0 ],
[ -1.0, 1.0 ],
[ 0.0, 2.0 ]]
let B = [ 1.0, 0.0, -1.0 ]
if let x = solveLeastSquare(A: A, B: B) {
print(x) // [0.33333333333333326, -0.33333333333333343]
}
Example 2: Underdetermined system, minimum norm
solution to x_1 + x_2 + x_3 = 1.0
.
let A = [[ 1.0, 1.0, 1.0 ]]
let B = [ 1.0 ]
if let x = solveLeastSquare(A: A, B: B) {
print(x) // [0.33333333333333337, 0.33333333333333337, 0.33333333333333337]
}
Update for Swift 3 and Swift 4:
func solveLeastSquare(A: [[Double]], B: [Double]) -> [Double]? {
precondition(A.count == B.count, "Non-matching dimensions")
var mode = Int8(bitPattern: UInt8(ascii: "N")) // "Normal" mode
var nrows = CInt(A.count)
var ncols = CInt(A[0].count)
var nrhs = CInt(1)
var ldb = max(nrows, ncols)
// Flattened columns of matrix A
var localA = (0 ..< nrows * ncols).map { (i) -> Double in
A[Int(i % nrows)][Int(i / nrows)]
}
// Vector B, expanded by zeros if ncols > nrows
var localB = B
if ldb > nrows {
localB.append(contentsOf: [Double](repeating: 0.0, count: Int(ldb - nrows)))
}
var wkopt = 0.0
var lwork: CInt = -1
var info: CInt = 0
// First call to determine optimal workspace size
var nrows_copy = nrows // Workaround for SE-0176
dgels_(&mode, &nrows, &ncols, &nrhs, &localA, &nrows_copy, &localB, &ldb, &wkopt, &lwork, &info)
lwork = Int32(wkopt)
// Allocate workspace and do actual calculation
var work = [Double](repeating: 0.0, count: Int(lwork))
dgels_(&mode, &nrows, &ncols, &nrhs, &localA, &nrows_copy, &localB, &ldb, &work, &lwork, &info)
if info != 0 {
print("A does not have full rank; the least squares solution could not be computed.")
return nil
}
return Array(localB.prefix(Int(ncols)))
}
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With