I want to build a multiple linear regression model by using Tensorflow.
Dataset: Portland housing prices
One data example: 2104,3,399900 (The first two are features, and the last one is house price; we have 47 examples)
Code below:
import numpy as np
import tensorflow as tf
import matplotlib.pyplot as plt
# model parameters as external flags
flags = tf.app.flags
FLAGS = flags.FLAGS
flags.DEFINE_float('learning_rate', 1.0, 'Initial learning rate.')
flags.DEFINE_integer('max_steps', 100, 'Number of steps to run trainer.')
flags.DEFINE_integer('display_step', 100, 'Display logs per step.')
def run_training(train_X, train_Y):
X = tf.placeholder(tf.float32, [m, n])
Y = tf.placeholder(tf.float32, [m, 1])
# weights
W = tf.Variable(tf.zeros([n, 1], dtype=np.float32), name="weight")
b = tf.Variable(tf.zeros([1], dtype=np.float32), name="bias")
# linear model
activation = tf.add(tf.matmul(X, W), b)
cost = tf.reduce_sum(tf.square(activation - Y)) / (2*m)
optimizer = tf.train.GradientDescentOptimizer(FLAGS.learning_rate).minimize(cost)
with tf.Session() as sess:
init = tf.initialize_all_variables()
sess.run(init)
for step in range(FLAGS.max_steps):
sess.run(optimizer, feed_dict={X: np.asarray(train_X), Y: np.asarray(train_Y)})
if step % FLAGS.display_step == 0:
print "Step:", "%04d" % (step+1), "Cost=", "{:.2f}".format(sess.run(cost, \
feed_dict={X: np.asarray(train_X), Y: np.asarray(train_Y)})), "W=", sess.run(W), "b=", sess.run(b)
print "Optimization Finished!"
training_cost = sess.run(cost, feed_dict={X: np.asarray(train_X), Y: np.asarray(train_Y)})
print "Training Cost=", training_cost, "W=", sess.run(W), "b=", sess.run(b), '\n'
print "Predict.... (Predict a house with 1650 square feet and 3 bedrooms.)"
predict_X = np.array([1650, 3], dtype=np.float32).reshape((1, 2))
# Do not forget to normalize your features when you make this prediction
predict_X = predict_X / np.linalg.norm(predict_X)
predict_Y = tf.add(tf.matmul(predict_X, W),b)
print "House price(Y) =", sess.run(predict_Y)
def read_data(filename, read_from_file = True):
global m, n
if read_from_file:
with open(filename) as fd:
data_list = fd.read().splitlines()
m = len(data_list) # number of examples
n = 2 # number of features
train_X = np.zeros([m, n], dtype=np.float32)
train_Y = np.zeros([m, 1], dtype=np.float32)
for i in range(m):
datas = data_list[i].split(",")
for j in range(n):
train_X[i][j] = float(datas[j])
train_Y[i][0] = float(datas[-1])
else:
m = 47
n = 2
train_X = np.array( [[ 2.10400000e+03, 3.00000000e+00],
[ 1.60000000e+03, 3.00000000e+00],
[ 2.40000000e+03, 3.00000000e+00],
[ 1.41600000e+03, 2.00000000e+00],
[ 3.00000000e+03, 4.00000000e+00],
[ 1.98500000e+03, 4.00000000e+00],
[ 1.53400000e+03, 3.00000000e+00],
[ 1.42700000e+03, 3.00000000e+00],
[ 1.38000000e+03, 3.00000000e+00],
[ 1.49400000e+03, 3.00000000e+00],
[ 1.94000000e+03, 4.00000000e+00],
[ 2.00000000e+03, 3.00000000e+00],
[ 1.89000000e+03, 3.00000000e+00],
[ 4.47800000e+03, 5.00000000e+00],
[ 1.26800000e+03, 3.00000000e+00],
[ 2.30000000e+03, 4.00000000e+00],
[ 1.32000000e+03, 2.00000000e+00],
[ 1.23600000e+03, 3.00000000e+00],
[ 2.60900000e+03, 4.00000000e+00],
[ 3.03100000e+03, 4.00000000e+00],
[ 1.76700000e+03, 3.00000000e+00],
[ 1.88800000e+03, 2.00000000e+00],
[ 1.60400000e+03, 3.00000000e+00],
[ 1.96200000e+03, 4.00000000e+00],
[ 3.89000000e+03, 3.00000000e+00],
[ 1.10000000e+03, 3.00000000e+00],
[ 1.45800000e+03, 3.00000000e+00],
[ 2.52600000e+03, 3.00000000e+00],
[ 2.20000000e+03, 3.00000000e+00],
[ 2.63700000e+03, 3.00000000e+00],
[ 1.83900000e+03, 2.00000000e+00],
[ 1.00000000e+03, 1.00000000e+00],
[ 2.04000000e+03, 4.00000000e+00],
[ 3.13700000e+03, 3.00000000e+00],
[ 1.81100000e+03, 4.00000000e+00],
[ 1.43700000e+03, 3.00000000e+00],
[ 1.23900000e+03, 3.00000000e+00],
[ 2.13200000e+03, 4.00000000e+00],
[ 4.21500000e+03, 4.00000000e+00],
[ 2.16200000e+03, 4.00000000e+00],
[ 1.66400000e+03, 2.00000000e+00],
[ 2.23800000e+03, 3.00000000e+00],
[ 2.56700000e+03, 4.00000000e+00],
[ 1.20000000e+03, 3.00000000e+00],
[ 8.52000000e+02, 2.00000000e+00],
[ 1.85200000e+03, 4.00000000e+00],
[ 1.20300000e+03, 3.00000000e+00]]
).astype('float32')
train_Y = np.array([[ 399900.],
[ 329900.],
[ 369000.],
[ 232000.],
[ 539900.],
[ 299900.],
[ 314900.],
[ 198999.],
[ 212000.],
[ 242500.],
[ 239999.],
[ 347000.],
[ 329999.],
[ 699900.],
[ 259900.],
[ 449900.],
[ 299900.],
[ 199900.],
[ 499998.],
[ 599000.],
[ 252900.],
[ 255000.],
[ 242900.],
[ 259900.],
[ 573900.],
[ 249900.],
[ 464500.],
[ 469000.],
[ 475000.],
[ 299900.],
[ 349900.],
[ 169900.],
[ 314900.],
[ 579900.],
[ 285900.],
[ 249900.],
[ 229900.],
[ 345000.],
[ 549000.],
[ 287000.],
[ 368500.],
[ 329900.],
[ 314000.],
[ 299000.],
[ 179900.],
[ 299900.],
[ 239500.]]
).astype('float32')
return train_X, train_Y
def feature_normalize(train_X):
train_X_tmp = train_X.transpose()
for N in range(2):
train_X_tmp[N] = train_X_tmp[N] / np.linalg.norm(train_X_tmp[N])
train_X = train_X_tmp.transpose()
return train_X
import sys
def main(argv):
if not argv:
print "Enter data filename."
sys.exit()
filename = argv[1]
train_X, train_Y = read_data(filename, False)
train_X = feature_normalize(train_X)
run_training(train_X, train_Y)
if __name__ == '__main__':
tf.app.run()
Results I got:
with learning rate 1.0 and 100 iterations, the model finally predicts a house with 1650 square feet and 3 bedrooms get a price $752,903, with:
Training Cost= 4.94429e+09
W= [[ 505305.375] [ 177712.625]]
b= [ 247275.515625]
There must be some mistakes in my code as the plot of the cost function for different learning rates is just not same with the solution
I should got the following results as solution suggested:
theta_0: 340,413
theta_1: 110,631
theta_2: -6,649
The predicted price of the house should be $293,081.
Any wrong with my usage of tensorflow?
Linear Regression is one of the fundamental machine learning algorithms used to predict a continuous variable using one or more explanatory variables (features). In this tutorial, you will learn how to implement a simple linear regression in Tensorflow 2.0 using the Gradient Tape API.
Multiple linear regression is a regression model that estimates the relationship between a quantitative dependent variable and two or more independent variables using a straight line.
The feature normalization should be done by subtracting mean and dividing by range (or standard deviation).
def feature_normalize(train_X):
global mean, std
mean = np.mean(train_X, axis=0)
std = np.std(train_X, axis=0)
return (train_X - mean) / std
Do not forget to normalize your features when you make this prediction.
predict_X = (predict_X - mean)/std
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With